力扣 095. 最长公共子序列(C语言+动态规划)

1. 题目

        给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

        一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

        例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

        两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

2. 输入输出样例

        示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 

        示例 2: 

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 

         示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

 提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1 和 text2 仅由小写英文字符组成。

3. 解题思想

        动态规划步骤:

        (1)dp状态:

                dp[i][j]表示以text1[i]、text2[j]为结尾的两个字符串中最长公共子序列的长度;

        (2)状态转移方程:

                text1[i] == text2[j]:dp[i][j] = dp[i - 1][j - 1] + 1;

                text1[i] != text2[j]:max(dp[i - 1][j], dp[i][j - 1]);

        (3)初始化状态:

                第0行第0列:text1[0] == text2[0]:dp[0][0] = 1;text1[0] != text2[0]:dp[0][0] = 0;

                第0行:text1[i] == text2[0]:dp[i][0] = 1;text1[i] != text2[0]:dp[i][0] = dp[i - 1][0];

                第0列:text1[0] == text2[i]:dp[0][1] = 1;text1[0] != text2[i]:dp[0][i] = dp[0][i-1];

         (4)最优解:

                dp[n-1][m-1] ;

        算法描述:

        核心思想是通过填充 dp 数组,逐步构建最长公共子序列的长度,考虑字符是否匹配。

  • 首先,获取输入字符串 text1text2 的长度,并创建一个二维数组 dp,其大小为 (n+1) x (m+1),其中 nm 分别是两个字符串的长度。dp[i][j] 表示 text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列的长度。
  • 初始化 dp 数组的第一行和第一列:遍历两个字符串的首字符,如果它们相等,将 dp[0][0] 设置为1,否则将其保留为0。接着,初始化第一行和第一列的其余部分,以表示以 text1[0]text2[0] 开头的子序列。
  • 使用两个嵌套循环遍历 text1text2 的每个字符(除去第一个字符),填充 dp 数组。如果当前字符相同(text1[i] == text2[j]),则将 dp[i][j] 设置为左上角的对角元素值加1,表示找到了一个更长的公共子序列。如果当前字符不同,将 dp[i][j] 设置为左边或上边的较大值,表示要么继承左边的最长子序列长度,要么继承上边的最长子序列长度。
  • 最终,dp[n-1][m-1] 中存储的值即为 text1text2 的最长公共子序列的长度。

4. 代码实现

// 定义一个函数,该函数返回两个整数指针中的较大值
int max_(int *a, int *b) {
    // 比较两个指针的值,返回较大的指针
    if (a > b) {
        return a;
    }
    return b;
}

// 定义一个计算两个字符串的最长公共子序列的函数
int longestCommonSubsequence(char *text1, char *text2) {
    // 获取字符串text1和text2的长度
    int n = strlen(text1);
    int m = strlen(text2);

    // 创建一个二维数组dp,用于存储最长公共子序列的长度
    int dp[n][m];

    // 初始化dp数组,将所有元素设置为0
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            dp[i][j] = 0;
        }
    }

    // 初始化dp数组的第一个元素
    if (text1[0] == text2[0]) {
        dp[0][0] = 1;
    }

    // 处理第一列,初始化以text1[0]为开头的子序列
    for (int i = 1; i < n; i++) {
        if (text1[i] == text2[0]) {
            dp[i][0] = 1;
        } else {
            dp[i][0] = dp[i - 1][0];
        }
    }

    // 处理第一行,初始化以text2[0]为开头的子序列
    for (int i = 1; i < m; i++) {
        if (text1[0] == text2[i]) {
            dp[0][i] = 1;
        } else {
            dp[0][i] = dp[0][i - 1];
        }
    }

    // 填充dp数组的其余部分,找到最长公共子序列的长度
    for (int i = 1; i < n; i++) {
        for (int j = 1; j < m; j++) {
            if (text1[i] == text2[j]) {
                // 如果字符相同,将dp[i][j]设置为左上角值加1
                dp[i][j] = dp[i - 1][j - 1] + 1;
            } else {
                // 如果字符不相同,将dp[i][j]设置为左边和上边的较大值
                dp[i][j] = max_(dp[i - 1][j], dp[i][j - 1]);
            }
        }
    }

    // 返回dp数组的最右下角元素,即最长公共子序列的长度
    return dp[n - 1][m - 1];
}

 5. 复杂度分析

        时间复杂度分析:

  • 初始化 dp 数组的两个嵌套循环(for 循环嵌套)需要遍历整个数组,时间复杂度为O(n * m),其中 n 和 m 分别是 text1text2 的长度。
  • 接下来,还需要一个嵌套循环来填充 dp 数组,这个循环也需要遍历整个 dp 数组,时间复杂度为O(n * m)。
  • 总的时间复杂度是O(n * m + n * m),即O(n * m)。

        算法的时间复杂度是 O(n * m),其中 n 和 m 分别是输入字符串 text1text2 的长度。

        

        空间复杂度分析:

  • dp 数组的空间复杂度是O(n * m),因为它是一个二维数组,其大小与输入字符串的长度相关。

综上所述,这段代码的空间复杂度是 O(n * m)时间复杂度是 O(n * m)

 

 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台https://leetcode.cn/problems/qJnOS7/submissions/

 

你可能感兴趣的:(算法训练,c语言,动态规划,力扣,算法)