- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- 高考计算机专业选择
万能小贤哥
python人工智能机器学习高考
高考计算机专业选择:从认知到决策的全面指南在数字经济蓬勃发展的今天,计算机专业已成为高考志愿填报的热门之选。但计算机领域分支众多,专业名称相近却差异显著,如何结合自身特点做出合适选择,需要理性分析与规划。一、计算机类专业的“家族图谱”计算机类专业并非单一学科,而是包含多个细分方向,不同专业培养目标和侧重领域各有不同:-计算机科学与技术:这是计算机领域的“基础款”,涵盖计算机原理、编程语言、算法、操
- Python数据结构之 Big O
ぃ曦晔°
数据结构算法BigO复杂度
学习课程:【Udemy高分付费课程】Python数据结构与算法-终极Python编码面试和计算机科学训练营在Python中,BigO表示法用于描述算法的时间复杂度,即算法运行时间与输入大小之间的关系;或空间复杂度,即算法运行时所占用的内存。在处理时间复杂度和空间复杂度是有3个希腊字母:Ω--最佳速度θ--平均速度O--最坏情况我们在讨论BigO时,总是在谈论最坏情况(WorstCase)Pytho
- 构建企业级提示词管理平台
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
构建企业级提示词管理平台关键词:提示词管理平台、企业级、数据处理、用户交互、系统架构设计摘要:本文将详细探讨如何构建企业级提示词管理平台。我们将从问题背景出发,逐步深入分析核心概念、算法原理、系统设计与项目实战,提供一套完整的解决方案。1.背景介绍1.1问题背景在现代企业中,提示词作为一种重要的信息传递工具,广泛应用于客户服务、市场营销和内部沟通等多个领域。然而,随着数据量的爆炸式增长和业务场景的
- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- 多模态AI Agent技术栈解析:视觉-语言-决策融合的算法原理与实践
多模态AIAgent技术栈解析:视觉-语言-决策融合的算法原理与实践嗨,我是IRpickstars!总有一行代码,能点亮万千星辰。在技术的宇宙中,我愿做永不停歇的探索者。✨用代码丈量世界,用算法解码未来。我是摘星人,也是造梦者。每一次编译都是新的征程,每一个bug都是未解的谜题。让我们携手,在0和1的星河中,书写属于开发者的浪漫诗篇。目录编辑多模态AIAgent技术栈解析:视觉-语言-决策融合的算
- 【教程4>第7章>第26节】基于FPGA的RS(204,188)译码verilog实现10——RS译码模块整体实现与性能仿真评估
fpga和matlab
#第7章·通信—信道编译码fpga开发RSverilogRS译码教程4
本课程学习成果预览目录1.软件版本2.RS译码模块整体实现介绍2.1伴随式计算(SyndromeCalculation)2.2擦除位置处理(ErasureHandling)2.3多项式乘法(PolynomialMultiplication)2.4欧几里得算法(EuclideanAlgorithm)2.5钱搜索(ChienSearch)3.RS译码模块整体FPGA实现4.RS译码仿真测试5.视频操作
- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- 字节跳动抖音电商2-2 算法 20220331
史上最强的弟子
字节面试算法算法字节
题目:////n==nums.length//1<=n<=104//0<=nums[i]<=n//nums中的所有数字都独一无二//给定一个包含[0,n]中n个数的数组nums,找出[0,n]这个范围内没有出现在数组中的那个数。//输入:nums=[3,0,1]//输出:2//解释:n=3,因为有3个数字,所以所有的数字都在范围[0,3]内。2是丢失的数字,因为它没有出现在nums中。packag
- 解锁数据潜能——亮数据Web数据集,精准、全面、即时
程序猿追
其他领域嵌入式效率性能优化科技计算机外设
解锁数据潜能——亮数据Web数据集,精准、全面、即时在数据驱动的时代,获取高质量的网络数据成为许多企业与研究机构的核心需求。亮数据推出的Web数据集产品,试图通过技术手段解决传统数据采集中的痛点,为使用者提供更高效的数据支持方案。该数据集的核心优势体现在三个维度:数据精准度、覆盖全面性和更新即时性。在精准度方面,通过动态IP网络与智能解析算法的结合,有效降低了传统爬虫常遇到的反爬干扰,使获取的数据
- AI+大数据:社交网络分析在金融风控中的完整流程
AI智能应用
AI大模型应用入门实战与进阶人工智能大数据ai
AI+大数据:社交网络分析在金融风控中的完整流程关键词:AI、大数据、社交网络分析、金融风控、完整流程摘要:本文详细讲述了在金融风控领域运用AI和大数据进行社交网络分析的完整流程。通过通俗易懂的语言,从背景知识入手,解释核心概念,阐述算法原理,分享项目实战经验,探讨实际应用场景,推荐相关工具资源,展望未来发展趋势与挑战,旨在让读者全面了解这一复杂技术在金融风控中的应用。背景介绍目的和范围我们的目的
- AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
格图素书
人工智能深度学习
目录前言算法原理摄像头在自动驾驶中的作用与意义分类按通信协议区分按不同感光芯片按像元排列方式摄像头核心关键指标多传感器融合在自动驾驶中的应用▲不同自动驾驶等级的传感器配置▲L2级别▲L2+/3级别▲L4/5级别摄像头的种类与应用车载智能前视像头关键参数如何选择摄像头全车摄像头布置及功能前视摄像头环视摄像头后视摄像头侧视摄像头内置/外置后视摄像头雷达的种类与应用摄像头与雷达的数量配置产业与行业现状摄
- 计算机网络深度解析:HTTPS协议架构与安全机制全揭秘(2025演进版)
知识产权13937636601
计算机计算机网络https架构
摘要2025年全球HTTPS流量占比达99.7%(W3Techs数据),本文系统剖析HTTPS协议的技术演进与安全机制。从加密算法体系(国密SM2/3/4vsRSA/ECC)、TLS1.3协议超时优化、后量子密码迁移路径三大突破切入,结合OpenSSL3.2、BoringSSL实战案例,详解协议握手时延降低80%的底层逻辑,并首次公开混合加密、证书透明度、密钥交换攻击防御等关键工程部署策略,为开发
- JVM GC学习记录
不会吃萝卜的兔子
JVMGCjvm学习javaGC
垃圾标记算法:引用计数:解决不了垃圾对象循环引用问题。root扫描(可达性分析):从根对象(线程、main函数、静态变量、常量)扫描。三色标记:黑:其下所有子树,引用均被标记完成,是存活的最终状态。灰:其下所有子树,但引用的对象尚未完全检查,是存活的过渡状态。白:对象未被标记,默认初始状态,标记结束后仍为白色的对象将被回收。标记时会STW扫描根节点,然后标记线程与业务线程并行存在;会产生情况2,业
- 【基于C# + HALCON的工业视系统开发实战】十七、航空级精度!涡轮叶片三维型面检测:激光扫描与CAD模型比对技术
AI_DL_CODE
c#halcon三维检测涡轮叶片点云配准型面偏差激光扫描
摘要:涡轮叶片是航空发动机的核心部件,其型面精度直接影响发动机效率与安全性。传统三坐标测量存在效率低(单叶片需40分钟)、覆盖率不足(仅检测关键截面)等问题。本文基于C#.NETCore6与HALCON24.11,构建三维型面检测系统:通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪(保留0.03mm细节)与快速采样(0.1mm间隔)优化数据;采用ICP算法实现点云与CAD模型配准
- Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?
Echo_Wish
Python!实战!python自动驾驶开发语言
Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?今天咱们聊聊一个非常火但又特别实用的技术方向——自动驾驶仿真。具体点,就是用Python怎么玩转微软出品的自动驾驶仿真平台AirSim。别看名字叫AirSim,实际上它不仅支持无人机,还对自动驾驶汽车的模拟提供了强大支持。自动驾驶不是科幻,背后需要海量数据、复杂算法和大量实车测试。而现实世界测试成本高、风险大,怎么
- .net密码加密解密AES
步、步、为营
网络服务器运维.net
.NET中使用AES进行密码加密解密技术解析在当今数字化的时代,数据安全至关重要。密码作为保护个人和敏感信息的第一道防线,其加密和解密的安全性显得尤为重要。AES(AdvancedEncryptionStandard)作为一种广泛使用的对称加密算法,在.NET中也有着很好的支持。本文将深入探讨在.NET中如何使用AES算法进行密码的加密和解密。什么是AES算法AES,即高级加密标准,它是美国联邦政
- 【随机数真的是随机数吗?】
¥-oriented
其他
在计算机科学中,随机数是一个非常有趣且复杂的话题。我们常常在各种应用程序中看到随机数的应用,比如游戏、加密、统计模拟等。然而,许多人可能并不清楚计算机生成的随机数到底有多“随机”。本文将详细解释程序中的随机数,探讨其生成机制以及不同类型的随机数。伪随机数与真随机数首先,我们需要明确两个关键概念:伪随机数和真随机数。伪随机数(PseudorandomNumbers):伪随机数是由计算机算法生成的数字
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- LeetCode 热题 100 - 贪心算法 - 买卖股票的最佳时机 - javascript
Jxxli
LeetCodehot100leetcode算法贪心算法javascript
题目给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。示例1:输入:[7,1,5,3,6,4]输出:5解释:在第2天(股票价格=1)的时候买入,在第5天(股票价格=6)的时候卖出,
- 【算法系列】买卖股票的最佳时机【JS代码】
DTcode7
算法系列#前端基础入门三大核心之JS算法javascript最佳时机
【算法系列】买卖股票的最佳时机【JS代码】问题描述基本概念和作用说明解决方案暴力解法一次遍历法代码示例总结与讨论在前端开发中,虽然我们主要关注的是构建用户界面和交互逻辑,但掌握一些基本的算法和数据结构知识也是非常有用的。今天,我们就来探讨一个经典的问题:“买卖股票的最佳时机”。这个问题看似与前端开发无关,但实际上,它背后的算法思想对于优化我们的程序和解决问题有着极大的帮助。问题描述假设你有一个数组
- 买卖股票的最佳时机--js 算法
stoneSkySpace
算法javascript数据结构
一、买卖股票的最佳时机给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0;贪心算法:每次发现更低价格立即更新买入点(minPrice)每次发现更高利润立即更新卖出收益(maxProf
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- CppCon 2018 学习:A Little Order! Delving into the STL sorting algorithms
虾球xz
CppCon学习c++排序算法
记录一下一个编译器加密的算法#include#include#include#include#include#include#includenamespacedetail{//编译期伪随机key:每个字符对应不同keytemplateconstexprstd::uint8_tkey8(){returnstatic_cast((N*31+57)^0xAA);}}//namespacedetail//
- 使用c++编写一段人脸识别眨眼检测的代码
语嫣凝冰
c++opencv计算机视觉图像处理开发语言
我可以给你一些大致的步骤:使用摄像头或图像文件获取视频帧。使用人脸检测算法检测视频帧中的人脸。对检测到的人脸进行眼睛检测。判断眼睛是否闭合,如果是则认为该人在眨眼。以下是一段使用OpenCV库编写的C代码示例:```#include#include#include#includeusingnamespacestd;usingnamespacecv;intmain(){//使用摄像头获取视频帧Vid
- 欧盟AI法案、中国《生成式AI管理办法》规范数据隐私与算法歧视
DK_Allen
大模型人工智能算法
一、全球AI治理框架:双轨并行1.欧盟《AI法案》(2025全面生效)风险等级监管要求典型场景不可接受风险全面禁止社会评分系统、实时生物识别(公共场所)高风险强制注册+第三方评估+人工监督医疗诊断、关键基础设施管理有限风险透明度披露(AI生成内容标注)聊天机器人、深度伪造最小风险无限制垃圾邮件过滤、游戏AI处罚机制:最高罚金≈全球营收6%(或3000万欧元,取较高者)典型判例:ClearviewA
- 数据库领域数据仓库的星型模型与雪花模型对比
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库数据仓库ai
数据库领域数据仓库的星型模型与雪花模型对比关键词:数据仓库、星型模型、雪花模型、数据建模、对比分析摘要:本文深入探讨了数据库领域数据仓库中的星型模型与雪花模型。首先介绍了数据仓库建模的背景知识,包括目的、预期读者和文档结构等。接着详细阐述了星型模型和雪花模型的核心概念、联系以及各自的架构特点,并通过Mermaid流程图进行直观展示。然后对两种模型的核心算法原理展开分析,结合Python源代码进行说
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- AWS WebRTC: 判断viewer端拉流是否稳定的算法
Jasper张
AWSWebRTCwebrtcaws服务器linux
在使用sdk-cviewer端进行拉流的过程中,viewer端拉取的是视频帧和音频帧,不会在播放器中播放,所以要根据收到的流来判断拉流过程是否稳定流畅。我这边采用的算法是:依据相邻帧之间的时间间隔是否落在期望值的±20%范围内。音频帧、视频帧的日志打印如下:07:19:26.263VERBOSEsampleAudioFrameHandler():AudioFramereceived.TrackId
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include