- 数据架构与机器学习:如何构建智能系统
AI天才研究院
AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习(MachineLearning)是一种使计算机程序在未被明确编程的情况下,通过经验的学习自动改善其行为的技术。机器学习的目标是使计算机能够自主地从数据中学习,以便在未来的问题中做出更好的决策。数据架构(DataArchitecture)是一种用于有效管理、存储和处理数据的系统结构和组件。数据架构涉及到数据的收集、存储、处理和分析,以及数据的存储和传输。数据架构是构建智能系统的
- 解锁高性能Web应用:Gunicorn、Flask与Docker的高并发部署秘籍
我是瓦力
前端gunicornflask
引言在当今的互联网时代,高并发Web应用已成为许多企业的核心需求。无论是电商平台、社交网络还是实时数据分析系统,高并发能力直接影响到用户体验和业务成败。本文将带你深入探讨如何利用Gunicorn、Flask和Docker,实现高性能、高并发的Web应用部署。Gunicorn、Flask和Docker的基本概念Gunicorn:GreenUnicorn(简称Gunicorn)是一个PythonWSG
- 分布式光伏监控系统设计
能源数字化创业者
分布式能源管理
一、产品简介快控光伏运维云平台软件是针对工商业分布式光伏电站设计研发的一款集控管理系统。他通过智能网关采集现场逆变器、气象站、综合测控装置等各类设备的运行数据和状态,实现对光伏电站的24小时实时在线监控诊断,有效的保障了电站的安全运行。同时系统拉通线上线下运维,可极大的提高电站的运维的效率和质量。该平台软件主要有以下几大功能:1、实时在线监控,实时故障监测,第一时间通知电站运维人员及时消除隐患,确
- 元组(tuple)转换为列表(list)
Eternal-Student
Pythonlistwindows数据结构
在编程中,特别是在Python中,经常需要将元组(tuple)转换为列表(list)。元组通常使用圆括号()表示,如(x,y),而列表使用方括号[]表示,如[x,y]。以下是如何将(x,y)转换为[x,y]的详细方法和示例。一、单个元组转换为列表方法1:使用list()函数Python提供了内置的list()函数,可以将元组直接转换为列表。示例代码:#定义一个元组tuple_point=(3,5)
- 超详细的Numpy基础教程!!!
不会爬虫的闲鱼
numpy数据分析python
Numpy是一个开源的Python库,用于支持大型多维数组和矩阵运算,同时提供了大量的数学函数库。它是科学计算中非常重要的工具。Numpy在数据科学中非常重要,因为它提供了高效的数组处理能力和广泛的数学函数库,这对于处理大规模数据集、进行科学计算和机器学习等任务至关重要。一、安装与设置如何安装Numpypipinstallnumpy验证安装的方法importnumpyprint(numpy.__v
- 分布式光伏电站经济性指标优化分析
罗思付之技术屋
网络通信安全及科学技术专栏分布式
摘要结合工程经验,分析了工商业分布式光伏电站平准发电成本(LevelizedCostofEnergy,LCOE)、资本金内部收益率(InternalRateofReturn,IRR)的主要影响因素,其中平准发电成本主要受静态投资影响,资本金内部收益率主要受消纳比影响。针对上述影响因素,进一步讨论了LCOE、IRR指标优化方法与在工程项目中可选用的举措。最后,结合实际项目背景,在站址条件、组件瓦单价
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- 如何提高Flask的高并发性能
BirdMan98
FlaskPythonflaskpython后端
提高Flask的并发性能可以从多个方面入手,主要包括服务器优化、数据库优化、代码优化和使用异步技术。下面详细介绍几种方法:1.使用高性能WSGI服务器Flask自带的开发服务器(flaskrun)不适用于生产环境。建议使用高性能WSGI服务器来运行Flask:推荐的WSGI服务器Gunicorn(推荐):适用于LinuxWaitress:适用于WindowsuWSGI:适用于Linux,性能更强,
- JVM内存监控及调优分析
闲着无聊整些资料
JVMjvmjavalinux
一、内存监控背景在做JVM内存分析前,需要堆JVM内存及垃圾回收算法和垃圾回收器有一定了解,具体可以参考我之前的一篇文章:常见的垃圾回收器及垃圾回收算法1.1、为什么要做内存监控我们在做开发的时候不可避免的会遇到一些问题,诸如下面这些问题:生产环境发生了内存溢出该如何处理?生产环境应该给服务器分配多少内存合适?如何对垃圾回收器的性能进行调优?生产环境CPU负载飙高该如何处理?生产环境出现死锁该如何
- SQLite学习(十一)使用JDBC读写SQLite数据,基于Java实现
Designer 小郑
SQLite从入门到实战sqlite数据库sqljavajdbc
1.前言2.基础工作2.1创建Java项目2.2依赖Jar包3.连接SQLite4.查询SQLite数据5.新增SQLite数据6.总结1.前言在上一篇《SQLite学习(十)SQLite的注入问题的防范、数据库文件导入和导出》中,讲解了SQLite的SQL注入问题和应对措施,在本篇博客中,将继续讲解如何使用JDBC读写SQLite数据。同学们将学习到:JDBC是什么使用JDBC读写SQLite请
- HarmonyOS NEXT 使用AppStorageV2实现全屏展示
架构教育
在鸿蒙原生开发中,为了实现沉浸式效果,通常在页面中通过设置expandSafeArea属性向顶部和底部扩展安全区实现沉浸式效果,.expandSafeArea([SafeAreaType.SYSTEM],[SafeAreaEdge.TOP,SafeAreaEdge.BOTTOM]);设置完成后,发现没有实现想要的效果,就需要点击ArkUIInspector查看当前展示试图层级中,哪些试图没有实现沉
- 非对称加密:SSL/TLS握手的数学基石
安全
1.密钥交换的密码学困局在未加密的HTTP通信中,攻击者可通过中间人攻击(MITM)窃听或篡改数据。SSL/TLS协议的核心挑战在于:如何在不安全的信道上建立安全通信?这本质上是一个“密钥分发问题”——若使用对称加密(如AES),双方需要共享同一密钥,但密钥本身如何安全传递?非对称加密的突破性在于公钥与私钥的分离。以RSA算法为例,其数学基础是大质数分解难题:选择两个大质数p和q(通常≥2048位
- 短视频时代,普通人如何保护个人隐私?——从SSL证书看数据安全
安全
在短视频时代,每天数以亿计的用户上传内容、互动评论、甚至进行直播购物。然而,这些行为背后潜藏着隐私泄露的风险:账号密码被盗、支付信息被窃取、个人数据遭篡改……如何在这些场景中保护隐私?SSL证书作为互联网安全的基石,正扮演着关键角色。本文将从技术原理到实践建议,为你揭开SSL证书如何成为隐私保护的“隐形盾牌”。一、SSL证书:隐私保护的第一道防线SSL(SecureSocketsLayer)证书是
- 高并发系统的艺术:如何在流量洪峰中游刃有余
架构
作者:京东物流赵勇萍前言我们常说的三高,高并发、高可用、高性能,这些技术是构建现代互联网应用程序所必需的。对于京东618备战来说,所有的中台系统服务,无疑都是围绕着三高来展开的。而对于京东庞大的客户群体,高并发的要求尤为重要。用户对在线服务的需求和期望不断提高,系统的并发处理能力成为衡量其性能和用户体验的关键指标之一。高并发系统不仅仅是大型互联网企业的专利,对于任何希望在市场中占据一席之地的公司来
- 嵌入式AI必备技能2-模型的压缩与加速
奥德彪123
嵌入式AI人工智能嵌入式
嵌入式AI必备技能2-模型的压缩与加速引言随着嵌入式AI设备的广泛应用,模型的计算效率和存储需求成为核心挑战。由于嵌入式系统通常资源受限,传统的深度学习模型往往难以直接部署。因此,模型压缩和加速技术应运而生,旨在减少计算量、降低存储需求,同时尽可能保持模型的准确性。本文介绍几种常见的模型压缩与加速方法,包括剪枝、低秩分解、量化、权值共享、知识蒸馏等,并探讨如何综合应用这些技术来优化AI模型。1.常
- 5、STL中priority_queue的使用方法
周Echo周
STLc++开发语言笔记c语言算法数据结构leetcode
一、了解priority_queue用于实现优先队列(堆)。它基于std::vector(默认使用vector)或std::deque实现,默认情况下是一个最大堆(即队首元素是最大的元素)。对于异常处理,空队列一般自定义,但是priority_queue会使用std::out_of_range异常。时间复杂度插入操作:O(logn)删除操作:O(logn)访问队首元素:O(1)常见问题1、如何从给
- 数据标注工具及其对预训练模型性能的影响
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1预训练模型的崛起近年来,预训练模型(Pre-trainedModels)在自然语言处理(NLP)领域取得了显著的成功。这些模型通过在大规模无标注文本数据集上进行预训练,学习到丰富的语言知识和语义表示,并在下游任务中展现出优异的性能。BERT、GPT-3等预训练模型的出现,标志着NLP领域进入了一个新的时代。1.2数据标注的重要性尽管预训练模型展现出强大的能力,但它们仍然需要针对特
- 数据标注质量对AI模型质量的影响分析
自由鬼
行业发展IT应用探讨人工智能机器学习深度学习AI
上、数据标注质量与AI模型的质量关系数据标注是AI最基础的工作,数据标注的质量决定了AI质量,影响数据标注质量的是数据标注的规则。1、数据标注是AI最基础的工作:数据标注是构建高质量AI模型的基石:数据标注尤其是在监督学习范式下,是AI领域最基础、最关键的工作之一。没有高质量的标注数据,就如同建造高楼大厦没有坚实的地基,AI模型就无法有效地学习和训练,最终的AI质量也就无从谈起。训练数据是AI模型
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- HarmonyNext实战:基于ArkTS的跨平台3D图形渲染应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨平台3D图形渲染应用开发引言3D图形渲染是现代应用开发中的一个重要领域,尤其在游戏、虚拟现实和增强现实等场景中。HarmonyOSNext作为新一代操作系统,提供了强大的图形渲染能力,而ArkTS作为其核心开发语言,为开发者提供了高效、简洁的开发体验。本文将深入探讨如何在HarmonyNext平台上使用ArkTS开发一个跨平台的3D图形渲染应用,涵盖3
- HarmonyNext实战:基于ArkTS的跨设备3D游戏开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备3D游戏开发引言随着移动设备和智能终端的普及,3D游戏开发已成为开发者关注的热点领域。HarmonyNext作为新一代操作系统,提供了强大的分布式能力和高效的图形渲染支持,结合ArkTS语言的灵活性和性能优势,为开发跨设备3D游戏提供了全新的可能性。本文将详细讲解如何基于HarmonyNext和ArkTS开发一款跨设备的3D游戏,涵盖从项目搭建到核
- HarmonyNext实战:基于ArkTS的高性能区块链应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能区块链应用开发引言区块链技术作为一种去中心化、安全可信的分布式账本技术,正在各个领域得到广泛应用。本文将深入探讨如何利用ArkTS语言在HarmonyNext平台上开发一个高性能的区块链应用,涵盖从区块链基础概念到智能合约开发的完整流程。我们将通过一个实际的案例——去中心化投票系统,来展示如何在HarmonyNext上实现区块链技术的落地应用。1.
- HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发引言在音视频处理领域,实时性和性能是关键。随着HarmonyNext生态系统的不断发展,开发者可以利用ArkTS语言构建高性能的音视频处理应用。本文将深入探讨如何利用ArkTS开发一个音视频处理应用,重点介绍音频处理、视频编解码以及实时流媒体传输的实现。我们将从理论基础出发,逐步构建一个完整的应用,并通过优化技巧提升性能。1.音视
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。1.图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个
- Django 分页操作详解
jay丿
djangosqlite数据库
Django分页操作详解在Django项目中,当处理大量数据时,分页是一项非常关键的功能。它不仅可以提高用户体验,还能减少服务器的负担。Django提供了一个强大的分页工具——django.core.paginator.Paginator,可以很方便地实现数据的分页显示。本文将详细介绍如何使用Django的分页插件来实现分页功能。一、引入分页器首先,需要在你的视图文件中引入Django的分页器模块
- Java 入门指南:Java 8 新特性 —— Stream 流
热带鱼Tech
Javajava后端个人开发java-ee
文章目录JavaStream操作类型操作过程创建流操作流遍历forEach过滤filter映射map匹配match归约reduce排序sorted去重distinct限制limit跳过skip转换流流操作的特性JavaStreamJavaStream是Java8引入的一个新的API,它提供了一种函数式编程的方式来处理集合数据。Stream可以看作是一系列支持高效的、函数式操作的元素序列。通过使用S
- 贪心算法简介(greed)
神里流~霜灭
贪心算法精讲贪心算法c++c语言数据结构顺序表链表动态规划
前言:贪心算法(GreedyAlgorithm)是一种在每个决策阶段都选择当前最优解的算法策略,通过局部最优的累积来寻求全局最优解。其本质是"短视"策略,不回溯已做选择。什么是贪心、如何来理解贪心(个人对贪心的理解)前言对贪心是一种概念的回答。接下来就了解一下自己对贪心的理解,如果学习算法的化建议优先学习动态规划,动态规划相对于其他算法来说很简单。但是,贪心算法跟动态规划不同,非常难,贪心讲究策略
- Java Stream 流从零到一全指南
秋.
JAVAwindowsjava开发语言流strem
1.什么是JavaStream?JavaStream是Java8引入的一种用于处理数据集合的API,提供了声明式的方式进行数据处理。它能够支持函数式编程风格,极大地简化了集合操作,提高了代码的可读性和可维护性。Stream的核心特性链式操作:流操作可以串联在一起,避免了传统迭代方式的冗余代码。惰性求值:只有在终端操作时,流的计算才会执行。内部迭代:相比于for循环的外部迭代,Stream采用内部迭
- 基于纯视觉的 GUI 代理的屏幕解析工具(OmniParser)
deepdata_cn
应用软件GUI
OmniParser是一款开源工具,可通过解析用户界面截图生成结构化数据,助力打造视觉驱动的GUI自动化代理,赋能跨平台交互。一、技术原理1.数据集构建:从流行网页和应用中提取数据,构建可交互图标检测数据集和图标描述数据集,为模型训练提供基础。2.检测模型:使用YOLOv8模型在可交互图标检测数据集上进行微调,能够识别和定位用户界面中的可交互区域,如按钮、图标等。3.描述模型:利用BLIP-v2模
- 从前端视角理解消息队列:核心问题与实战指南
秋水为渡
前端
消息队列(MessageQueue)是现代分布式系统的核心组件之一,它在前后端协作、系统解耦、流量削峰等场景中发挥着重要作用。本文从前端开发者视角出发,解析消息队列的关键问题,并结合实际场景给出解决方案。一、为什么要使用消息队列?1.前端常见场景异步任务处理:用户行为日志上报、实时通知推送流量削峰:应对秒杀活动、大文件上传等瞬时高并发场景系统解耦:前端与后端服务、第三方服务之间的松耦合通信2.前端
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR