这个PW其实类似resnet中的1*1卷积变换,只不过这里是先升维,再降维,因为更多的模型参数是在3*3卷积层,ResNeXt使用组卷积减少模型参数,当组数和通道数一样时就是DW卷积,MobilNet为了减少参数主要是在3*3这一层上进行的,但是为了兼顾一下通道信息,所以先升维。
PW+DW+PW
MobileNetV1参数表:
MobileNetV1并没有使用shortcut连接,V2中使用,由于先升后降,称之为倒残差结构。
MobileNetV2 参数表
model.py:
from torch import nn
import torch
def _make_divisible(ch, divisor=8, min_ch=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
#这个函数实现了对输出通道调整为8的倍数,目的是方便使用alpha倍率因子减少MobileNet模型参数时,能够得到整数的通道数
if min_ch is None:
min_ch = divisor
new_ch = max(min_ch, int(ch + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_ch < 0.9 * ch:
new_ch += divisor
#返回新的调整后的通道数
return new_ch
class ConvBNReLU(nn.Sequential):
#注意这个模块没有前向传播的写法,直接init传参进行卷积
def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
#DW卷积是Conv2d通过group参数实现的,group=in_channel时,就是DW卷积
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module): #参数表中的bottleneck操作,或模块
def __init__(self, in_channel, out_channel, stride, expand_ratio):
super(InvertedResidual, self).__init__()
# 倒残差模块中间PW升维的倍率 expand_ratio,升维后再用DW卷积
hidden_channel = in_channel * expand_ratio
#是否用残差连接,第一次执行并不使用shortcut连接
self.use_shortcut = stride == 1 and in_channel == out_channel
#ConvBNReLU就是一个DW实现块,通过groups参数实现DW卷积,附带BN和DW的ReLU6激活
#layers = []就是一个包含PW,DW,PW的倒残差块,最后一个PW降维用Conv2d实现,因为采用线性激活可以省略,不用ConvBNReLU,虽然也可控制group实现PW卷积,但激活函数不匹配
layers = []
if expand_ratio != 1:
#PW膨胀系数不为1才进行PW升维操作,第一个bottleneck的t=1,用于减少模型参数的DW操作的隐藏层和输入通道一样,不进行升维
#即t!=1,才有这一层PW操作
# 1x1 pointwise conv
layers.append(ConvBNReLU(in_channel, hidden_channel, kernel_size=1))
layers.extend([
# 3x3 depthwise conv 这就是一个bottleneck
ConvBNReLU(hidden_channel, hidden_channel, stride=stride, groups=hidden_channel),
# 1x1 pointwise conv(linear)
nn.Conv2d(hidden_channel, out_channel, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channel),
])
#对layers[]实现的bottleneck模块进行封装
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_shortcut:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, num_classes=1000, alpha=1.0, round_nearest=8):
super(MobileNetV2, self).__init__()
block = InvertedResidual
# 第一层倒残差输入是32,最后一层倒残差输出是1280
input_channel = _make_divisible(32 * alpha, round_nearest)
last_channel = _make_divisible(1280 * alpha, round_nearest)
# 倒残差组成的块参数设置
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
#t是隐藏层扩张系数,即PW对输入通道升维的倍数,c是PW降维后的输出通道数,n是这个倒残差模块使用次数,s是第一层PW的步长,其他层步长都是1
#c也就是这一层的输出通道数
#stride = s if i == 0 else 1 通过下面的这行代码实现
features = []
# conv1 layer
#第一层卷积操作,输入是RGB3通道,输出是前面的input_channel = _make_divisible(32 * alpha, round_nearest)
features.append(ConvBNReLU(3, input_channel, stride=2))
# building inverted residual residual blockes
for t, c, n, s in inverted_residual_setting:
#每一层的输出通道数都要乘alpha系数,这个alpha是通过减少通道数来减少模型参数的
#整个MobileNet系列模型的主要目的就是在尽量保证准确率,运算速度前提下减少模型参数,
output_channel = _make_divisible(c * alpha, round_nearest)
for i in range(n):
# 每个模块的重复过程中只有除第一层步长是s(参数表给出的s),其他操作s都是1
stride = s if i == 0 else 1
# 第一次执行的input_channel是第一层的卷积层输出的32层通道,第一个倒残差块的扩张系数是1,即PW不参与隐藏层升维
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
#(input_channel, last_channel, 1) = (320,1280,1)
features.append(ConvBNReLU(input_channel, last_channel, 1))
# combine feature layers
self.features = nn.Sequential(*features)
# building classifier
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(last_channel, num_classes)
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
#先经过self.avgpool(x)把提取特征图后的7*7*1280大小的x转为1*1*1280的形状,再x = torch.flatten(x, 1)展平为1维向量
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
train.py
冻结预训练模型权重,在我的笔记本上训练的是相当快!
import os
import sys
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
from model_v2 import MobileNetV2
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
batch_size = 16
epochs = 5
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
"val": transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
image_path = os.path.join(data_root, "data_set", "flower_data") # flower data set path
assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
transform=data_transform["train"])
train_num = len(train_dataset)
# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
flower_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in flower_list.items())
# write dict into json file
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, shuffle=True,
num_workers=nw)
validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
batch_size=batch_size, shuffle=False,
num_workers=nw)
print("using {} images for training, {} images for validation.".format(train_num,
val_num))
# create model
net = MobileNetV2(num_classes=5)
# load pretrain weights
# download url: https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
model_weight_path = "./mobilenet_v2-pre.pth"
assert os.path.exists(model_weight_path), "file {} dose not exist.".format(model_weight_path)
pre_weights = torch.load(model_weight_path, map_location='cpu')
# delete classifier weights
pre_dict = {k: v for k, v in pre_weights.items() if net.state_dict()[k].numel() == v.numel()}
missing_keys, unexpected_keys = net.load_state_dict(pre_dict, strict=False)
# freeze features weights
for param in net.features.parameters():
param.requires_grad = False
net.to(device)
# define loss function
loss_function = nn.CrossEntropyLoss()
# construct an optimizer
params = [p for p in net.parameters() if p.requires_grad]
optimizer = optim.Adam(params, lr=0.0001)
best_acc = 0.0
save_path = './MobileNetV2.pth'
train_steps = len(train_loader)
for epoch in range(epochs):
# train
net.train()
running_loss = 0.0
train_bar = tqdm(train_loader, file=sys.stdout)
for step, data in enumerate(train_bar):
images, labels = data
optimizer.zero_grad()
logits = net(images.to(device))
loss = loss_function(logits, labels.to(device))
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
epochs,
loss)
# validate
net.eval()
acc = 0.0 # accumulate accurate number / epoch
with torch.no_grad():
val_bar = tqdm(validate_loader, file=sys.stdout)
for val_data in val_bar:
val_images, val_labels = val_data
outputs = net(val_images.to(device))
# loss = loss_function(outputs, test_labels)
predict_y = torch.max(outputs, dim=1)[1]
acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
epochs)
val_accurate = acc / val_num
print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
(epoch + 1, running_loss / train_steps, val_accurate))
if val_accurate > best_acc:
best_acc = val_accurate
torch.save(net.state_dict(), save_path)
print('Finished Training')
if __name__ == '__main__':
main()
训练结果:
using cuda:0 device.
Using 8 dataloader workers every process
using 3306 images for training, 364 images for validation.
train epoch[1/5] loss:0.888: 100%|██████████| 207/207 [00:24<00:00, 8.40it/s]
valid epoch[1/5]: 100%|██████████| 23/23 [00:14<00:00, 1.63it/s]
[epoch 1] train_loss: 1.281 val_accuracy: 0.805
train epoch[2/5] loss:0.614: 100%|██████████| 207/207 [00:20<00:00, 10.22it/s]
valid epoch[2/5]: 100%|██████████| 23/23 [00:13<00:00, 1.66it/s]
[epoch 2] train_loss: 0.885 val_accuracy: 0.838
train epoch[3/5] loss:0.811: 100%|██████████| 207/207 [00:19<00:00, 10.40it/s]
valid epoch[3/5]: 100%|██████████| 23/23 [00:14<00:00, 1.62it/s]
[epoch 3] train_loss: 0.720 val_accuracy: 0.830
train epoch[4/5] loss:0.620: 100%|██████████| 207/207 [00:19<00:00, 10.65it/s]
valid epoch[4/5]: 100%|██████████| 23/23 [00:13<00:00, 1.70it/s]
[epoch 4] train_loss: 0.636 val_accuracy: 0.838
train epoch[5/5] loss:0.689: 100%|██████████| 207/207 [00:19<00:00, 10.46it/s]
valid epoch[5/5]: 100%|██████████| 23/23 [00:14<00:00, 1.60it/s]
[epoch 5] train_loss: 0.583 val_accuracy: 0.852
Finished Training
predict.py
import os
import json
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
from model_v2 import MobileNetV2
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
data_transform = transforms.Compose(
[transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
# load image
img_path = "./test.jpg"
assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
img = Image.open(img_path)
plt.imshow(img)
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)
# read class_indict
json_path = './class_indices.json'
assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
with open(json_path, "r") as f:
class_indict = json.load(f)
# create model
model = MobileNetV2(num_classes=5).to(device)
# load model weights
model_weight_path = "./MobileNetV2.pth"
model.load_state_dict(torch.load(model_weight_path, map_location=device))
model.eval()
with torch.no_grad():
# predict class
output = torch.squeeze(model(img.to(device))).cpu()
predict = torch.softmax(output, dim=0)
predict_cla = torch.argmax(predict).numpy()
print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
predict[predict_cla].numpy())
plt.title(print_res)
for i in range(len(predict)):
print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
predict[i].numpy()))
plt.show()
if __name__ == '__main__':
main()
预测结果:
class: daisy prob: 0.00213
class: dandelion prob: 0.0071
class: roses prob: 0.0101
class: sunflowers prob: 0.0144
class: tulips prob: 0.966
Process finished with exit code 0