[Microsoft/AI-System]AI系统 Lecture2+Lab2

2021-07-12
地址: microsoft/AI-System

课程内容,讲座+实验

Lecture2:System perspective of Systems for AI

Lecture2 对Systems for AI的大概介绍
课程安排,先修知识
最有价值的几张PPT


技术栈
技术生态
详细图
难点
AI system

Lab2:Customize operators 定制一个新的张量运算

实验要求

1-4.在MNIST的模型样例中,选择线性层(Linear)张量运算进行定制化实现
线性张量:这样的算式?

前向传播:
output = input*weights
反向传播:
output= grad_output * weights^T
grad_weight = input^T * grad_output

数学推倒参考:Numpy实现神经网络框架(3)——线性层反向传播推导及实现
这里还是谜哈

一开始没看懂“基本单位:Function和Module”指什么,然后去看了答案,是实现以 torch.autograd.Function,nn.Module为基类,继承之后实现自己功能的类
代码参考

#继承torch.autograd.Function,写一个linear的函数
class myLinearFunction(torch.autograd.Function):
    # Note that both forward and backward are @staticmethods
    @staticmethod
    def forward(ctx, input, weight):
        # 存下input 和weight
        ctx.save_for_backward(input, weight)
        # y = ax + b, b呢,可以通过参数加上,参考这里的实现(https://zhuanlan.zhihu.com/p/67854272)
        # 注意这里的weight加了转置
        output = input.mm(weight.t())
        return output
        
    @staticmethod
    def backward(ctx, grad_output):
        #获得正向传播的input和weight
        input, weight = ctx.saved_tensors
        # 这一句没看明白
        grad_input = grad_weight = None
        # 这里的注释也没明白
        #if ctx.needs_input_grad[0]:
        # grad_input =  grad_output*weights
        grad_input = grad_output.mm(weight)
        #if ctx.needs_input_grad[1]:
        # grad_weight = grad_output^T * input
        grad_weight = grad_output.t().mm(input)
        return grad_input, grad_weight

#继承nn.Module,写一个linear Module
# 输入输出定义里,参数为什么是output_features, input_features两个的在一起的tensor?
class myLinear(nn.Module):
    def __init__(self, input_features, output_features):
        super(myLinear, self).__init__()
        self.input_features = input_features
        self.output_features = output_features
        self.weight = nn.Parameter(torch.Tensor(output_features, input_features))
        self.weight.data.uniform_(-0.1, 0.1)
    
    def forward(self, input):
        return myLinearFunction.apply(input, self.weight)

然后在代码中将第一行替换成自己的Linear

        # self.fc2 = nn.Linear(128, 10)
        self.fc2 = myLinear(128, 10)

其他的地方不需要变动

5.实现C++版本的定制化张量运算
c++我不太熟悉,还是直接看答案的,区别就是计算过程换成了mylinear_cpp.forward

class myLinearFunction(torch.autograd.Function):
    # Note that both forward and backward are @staticmethods
    @staticmethod
    def forward(ctx, input, weight):
        ctx.save_for_backward(input, weight)
        #output = input.mm(weight.t())
        output = mylinear_cpp.forward(input, weight)
        return output[0]
        
    @staticmethod
    def backward(ctx, grad_output):
        input, weight = ctx.saved_tensors
        #grad_input = grad_weight = None
        #grad_input = grad_output.mm(weight)
        #grad_weight = grad_output.t().mm(input)
        grad_input, grad_weight = mylinear_cpp.backward(grad_output, input, weight)
        return grad_input, grad_weight

class myLinear(nn.Module):
    def __init__(self, input_features, output_features):
        super(myLinear, self).__init__()
        self.input_features = input_features
        self.output_features = output_features
        self.weight = nn.Parameter(torch.Tensor(output_features, input_features))
        self.weight.data.uniform_(-0.1, 0.1)
    
    def forward(self, input):
        return myLinearFunction.apply(input, self.weight)

c++实现代码

#include 

#include 
#include 

std::vector mylinear_forward(
    torch::Tensor input,
    torch::Tensor weights) 
{
   // 前向传播,就input*weights
    auto output = torch::mm(input, weights.transpose(0, 1));
    //返回结果
    return {output};
}

//反向传播
std::vector mylinear_backward(
    torch::Tensor grad_output,
    torch::Tensor input,
    torch::Tensor weights
    ) 
{
    // 这里没看懂
    auto grad_input = torch::mm(grad_output, weights);
    auto grad_weights = torch::mm(grad_output.transpose(0, 1), input);

    return {grad_input, grad_weights};
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &mylinear_forward, "myLinear forward");
  m.def("backward", &mylinear_backward, "myLinear backward");
}

这里的推导和代码是不匹配的,但是我不像细细推理谁是谁了,大家感兴趣的可以仔细看看

实验结果

完整代码:https://github.com/microsoft/AI-System/tree/main/Labs/BasicLabs/Lab2
实验报告:https://www.jianshu.com/p/4268f9e1c55b

你可能感兴趣的:([Microsoft/AI-System]AI系统 Lecture2+Lab2)