使用瑞萨的RA4M3单片机编写BOOT引导程序进行测试,在BOOT程序跳转到主程序时,主程序无法执行。本文介绍了问题的定位和解决方法。
硬件环境 | RA4M3 官方开发板 J-LINK V11 开发板自带 |
软件开发环境 | e2 studio VSCODE |
软件支持包 | 灵活配置软件包 FSP 安装 |
一开始从BOOT更新了APP FLASH后,然后跳转主程序APP地址,发现程序无法执行,注释掉下面的代码就可以。
SystemInit()
但是这样系统时钟没有经过初始化,延时函数会出问题。
后来 经过挨着注释 最好发现注释掉函数里的下面这行就能跳转了。
/* Call Post C runtime initialization hook. */
// R_BSP_WarmStart(BSP_WARM_START_POST_C);
/*******************************************************************************************************************//**
* Initialize the MCU and the runtime environment.
**********************************************************************************************************************/
void SystemInit (void)
{
// *__Vectors = (uint32_t * )0x00038000;
#if __FPU_USED
/* Enable the FPU only when it is used.
* Code taken from Section 7.1, Cortex-M4 TRM (DDI0439C) */
/* Set bits 20-23 (CP10 and CP11) to enable FPU. */
SCB->CPACR = (uint32_t) CP_MASK;
#endif
#if BSP_TZ_SECURE_BUILD
/* Seal the main stack for secure projects. Reference:
* https://developer.arm.com/documentation/100720/0300
* https://developer.arm.com/support/arm-security-updates/armv8-m-stack-sealing */
uint32_t * p_main_stack_top = (uint32_t *) __Vectors[0];
*p_main_stack_top = BSP_TZ_STACK_SEAL_VALUE;
#endif
#if !BSP_TZ_NONSECURE_BUILD
/* VTOR is in undefined state out of RESET:
* https://developer.arm.com/documentation/100235/0004/the-cortex-m33-peripherals/system-control-block/system-control-block-registers-summary?lang=en.
* Set the Secure/Non-Secure VTOR to the vector table address based on the build. This is skipped for non-secure
* projects because SCB_NS->VTOR is set by the secure project before the non-secure project runs. */
// SCB->VTOR = (uint32_t) &__Vectors;
SCB->VTOR = (uint32_t)&__Vectors;
#endif
#if !BSP_TZ_CFG_SKIP_INIT
#if BSP_FEATURE_BSP_VBATT_HAS_VBTCR1_BPWSWSTP
/* Unlock VBTCR1 register. */
R_SYSTEM->PRCR = (uint16_t) BSP_PRV_PRCR_PRC1_UNLOCK;
/* The VBTCR1.BPWSWSTP must be set after reset on MCUs that have VBTCR1.BPWSWSTP. Reference section 11.2.1
* "VBATT Control Register 1 (VBTCR1)" and Figure 11.2 "Setting flow of the VBTCR1.BPWSWSTP bit" in the RA4M1 manual
* R01UM0007EU0110. This must be done before bsp_clock_init because LOCOCR, LOCOUTCR, SOSCCR, and SOMCR cannot
* be accessed until VBTSR.VBTRVLD is set. */
R_SYSTEM->VBTCR1 = 1U;
FSP_HARDWARE_REGISTER_WAIT(R_SYSTEM->VBTSR_b.VBTRVLD, 1U);
/* Lock VBTCR1 register. */
R_SYSTEM->PRCR = (uint16_t) BSP_PRV_PRCR_LOCK;
#endif
#endif
#if BSP_FEATURE_TFU_SUPPORTED
R_BSP_MODULE_START(FSP_IP_TFU, 0U);
#endif
#if BSP_CFG_EARLY_INIT
/* Initialize uninitialized BSP variables early for use in R_BSP_WarmStart. */
bsp_init_uninitialized_vars();
#endif
/* Call pre clock initialization hook. */
R_BSP_WarmStart(BSP_WARM_START_RESET);
#if BSP_TZ_CFG_SKIP_INIT
/* Initialize clock variables to be used with R_BSP_SoftwareDelay. */
bsp_clock_freq_var_init();
#else
/* Configure system clocks. */
bsp_clock_init();
#if BSP_FEATURE_BSP_RESET_TRNG
/* To prevent an undesired current draw, this MCU requires a reset
* of the TRNG circuit after the clocks are initialized */
bsp_reset_trng_circuit();
#endif
#endif
/* Call post clock initialization hook. */
R_BSP_WarmStart(BSP_WARM_START_POST_CLOCK);
#if BSP_FEATURE_BSP_HAS_SP_MON
/* Disable MSP monitoring */
R_MPU_SPMON->SP[0].CTL = 0;
/* Setup NMI interrupt */
R_MPU_SPMON->SP[0].OAD = BSP_STACK_POINTER_MONITOR_NMI_ON_DETECTION;
/* Setup start address */
R_MPU_SPMON->SP[0].SA = BSP_PRV_STACK_LIMIT;
/* Setup end address */
R_MPU_SPMON->SP[0].EA = BSP_PRV_STACK_TOP;
/* Set SPEEN bit to enable NMI on stack monitor exception. NMIER bits cannot be cleared after reset, so no need
* to read-modify-write. */
R_ICU->NMIER = R_ICU_NMIER_SPEEN_Msk;
/* Enable MSP monitoring */
R_MPU_SPMON->SP[0].CTL = 1U;
#endif
#if BSP_FEATURE_TZ_HAS_TRUSTZONE
/* Use CM33 stack monitor. */
__set_MSPLIM(BSP_PRV_STACK_LIMIT);
// __set_MSPLIM(0);
#endif
#if BSP_CFG_C_RUNTIME_INIT
/* Initialize C runtime environment. */
/* Zero out BSS */
#if defined(__ARMCC_VERSION)
memset((uint8_t *) &Image$$BSS$$ZI$$Base, 0U, (uint32_t) &Image$$BSS$$ZI$$Length);
#elif defined(__GNUC__)
memset(&__bss_start__, 0U, ((uint32_t) &__bss_end__ - (uint32_t) &__bss_start__));
#elif defined(__ICCARM__)
memset((uint32_t *) __section_begin(".bss"), 0U, (uint32_t) __section_size(".bss"));
#endif
/* Copy initialized RAM data from ROM to RAM. */
#if defined(__ARMCC_VERSION)
memcpy((uint8_t *) &Image$$DATA$$Base, (uint8_t *) &Load$$DATA$$Base, (uint32_t) &Image$$DATA$$Length);
#elif defined(__GNUC__)
memcpy(&__data_start__, &__etext, ((uint32_t) &__data_end__ - (uint32_t) &__data_start__));
#elif defined(__ICCARM__)
memcpy((uint32_t *) __section_begin(".data"), (uint32_t *) __section_begin(".data_init"),
(uint32_t) __section_size(".data"));
/* Copy functions to be executed from RAM. */
#pragma section=".code_in_ram"
#pragma section=".code_in_ram_init"
memcpy((uint32_t *) __section_begin(".code_in_ram"),
(uint32_t *) __section_begin(".code_in_ram_init"),
(uint32_t) __section_size(".code_in_ram"));
/* Copy main thread TLS to RAM. */
#pragma section="__DLIB_PERTHREAD_init"
#pragma section="__DLIB_PERTHREAD"
memcpy((uint32_t *) __section_begin("__DLIB_PERTHREAD"), (uint32_t *) __section_begin("__DLIB_PERTHREAD_init"),
(uint32_t) __section_size("__DLIB_PERTHREAD_init"));
#endif
/* Initialize static constructors */
#if defined(__ARMCC_VERSION)
int32_t count = Image$$INIT_ARRAY$$Limit - Image$$INIT_ARRAY$$Base;
for (int32_t i = 0; i < count; i++)
{
void (* p_init_func)(void) =
(void (*)(void))((uint32_t) &Image$$INIT_ARRAY$$Base + (uint32_t) Image$$INIT_ARRAY$$Base[i]);
p_init_func();
}
#elif defined(__GNUC__)
int32_t count = __init_array_end - __init_array_start;
for (int32_t i = 0; i < count; i++)
{
__init_array_start[i]();
}
#elif defined(__ICCARM__)
void const * pibase = __section_begin("SHT$$PREINIT_ARRAY");
void const * ilimit = __section_end("SHT$$INIT_ARRAY");
__call_ctors(pibase, ilimit);
#endif
#endif // BSP_CFG_C_RUNTIME_INIT
/* Initialize SystemCoreClock variable. */
SystemCoreClockUpdate();
#if !BSP_CFG_PFS_PROTECT
#if BSP_TZ_SECURE_BUILD
R_PMISC->PWPRS = 0; ///< Clear BOWI bit - writing to PFSWE bit enabled
R_PMISC->PWPRS = 1U << BSP_IO_PWPR_PFSWE_OFFSET; ///< Set PFSWE bit - writing to PFS register enabled
#else
R_PMISC->PWPR = 0; ///< Clear BOWI bit - writing to PFSWE bit enabled
R_PMISC->PWPR = 1U << BSP_IO_PWPR_PFSWE_OFFSET; ///< Set PFSWE bit - writing to PFS register enabled
#endif
#endif
#if FSP_PRIV_TZ_USE_SECURE_REGS
/* Ensure that the PMSAR registers are reset (Soft reset does not reset PMSAR). */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_SAR);
for (uint32_t i = 0; i < 9; i++)
{
R_PMISC->PMSAR[i].PMSAR = UINT16_MAX;
}
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_SAR);
#endif
#if BSP_TZ_SECURE_BUILD
/* Initialize security features. */
R_BSP_SecurityInit();
#endif
/* Call Post C runtime initialization hook. */
// R_BSP_WarmStart(BSP_WARM_START_POST_C);
/* Initialize ELC events that will be used to trigger NVIC interrupts. */
bsp_irq_cfg();
/* Call any BSP specific code. No arguments are needed so NULL is sent. */
bsp_init(NULL);
}