格密码学重要概念: 高斯平滑参数

简介:格最短向量范数‘密度’的下界。

1第一次提到平滑参数
Micciancio2007提到的平滑参数。2
平滑参数是格上高斯的一个测量值,类似与高斯函数的偏差。

1 为什么要用到平滑参数?

实际上,平滑参数只是定义了一个临界值,当格上的离散高斯分布的标准方差大于此参数时,那么从此分布中选取的点在模格的单元平行多面体中后,几乎将服从均匀随机分布,而当小于此参数时,则不服从均匀随机分布。
格密码学重要概念: 高斯平滑参数_第1张图片

2 什么是平滑参数?

定义 (Smoothing parameter [MR07]). For any n n n-dimensional lattice Λ \Lambda Λand real ε \varepsilon ε > 0, the smoothing parameter η ε ( Λ ) {\eta _\varepsilon }(\Lambda ) ηε(Λ) is the smallest s > 0 s > 0 s>0 such that ρ 1 / s 2 π , 0 ( Λ ∗ \ 0 ) ≤ ε \rho_{1/s\sqrt {2\pi},0}(\Lambda^*\backslash 0)\le\varepsilon ρ1/s2π ,0(Λ\0)ε.
We also define scaled version η ε ′ ( Λ ) = 1 2 η ε ( Λ ) {\eta '_\varepsilon }(\Lambda )=\frac{1}{{\sqrt 2 }}\eta_\varepsilon(\Lambda) ηε(Λ)=2 1ηε(Λ)
注意: ρ 1 / s ( Λ ∗ \ 0 ) ≤ ε \rho_{1/s}(\Lambda^*\backslash 0)\le\varepsilon ρ1/s(Λ\0)ε是一个连续且严格递减的函数。
越密集格具有更小的平滑参数。

3运用场景

[19]=2
格密码学重要概念: 高斯平滑参数_第2张图片

Lemma
For any n-dimensional lattice Λ \Lambda Λ of rank k k k, and any real ε \varepsilon ε > 0,
η ε ( Λ ) ≤ λ k ( Λ ) log ⁡ ( 2 k ( 1 + 1 / ε ) ) / π \eta_{\varepsilon}(\Lambda)\le \lambda_k(\Lambda)\sqrt {\log(2k(1+1/\varepsilon))/\pi} ηε(Λ)λk(Λ)log(2k(1+1/ε))/π
λ k ( Λ ) \lambda_k(\Lambda) λk(Λ):是协方差矩阵 ∑ \sum 的最小特征值。

This is in particular the case for the correctness of the sampling algorithm of [GPV08]: it is correct up to negligible statistical distance for any choice of s = ω ( log ⁡ n ) ⋅ ∥ B ~ ∥ s = \omega (\sqrt {\log n} )\cdot \left\| {\tilde \bold B} \right\| s=ω(logn )B~. A concrete sufficient condition to ensure λ \lambda λ-bits of security was computed in [DN12a]


  1. P.Q. Ngayen, O. Regev. Learning a parallelepiped: cryptanalysis of GGH and
    NTRU signatures. In: Advances in cryptology Eurocrypt 2006. Lecture notes in
    computer science. Springer, New York, pp. 215-233. ↩︎

  2. Worst-case to average-case reductions based on gaussian measures ↩︎ ↩︎

你可能感兴趣的:(#,格密码学重要概念)