text
text
text
text
text
*text*
斜体 or 斜体
*斜体* or _斜体_
加粗斜体
***加粗斜体***
#~######
text
==text==
删除线~~删除线~~
Ttext
T^text^
Ttext
T~text~
- text
-/+/* text
- text
- [ ] text : 未完成
- text
- [x] text : 已完成
[text](url)
! [img] (url)
>
表头1 | 表头2 |
---|---|
|表头1|表头2|
$$
$$
import pandas as pd
```python
δ , λ Δ , Λ α β ϕ , φ ϵ , ε π \delta,\lambda \\ \Delta,\Lambda \\ \alpha\beta \\ \phi,\varphi\\ \epsilon,\varepsilon \\ \pi δ,λΔ,Λαβϕ,φϵ,επ
\\: 换行
a 2 , b 1 x y + z , p i j , p i j a^2,b_1\\ x^{y+z},p_{ij},p_ij a2,b1xy+z,pij,pij
英文字母只有在表示变量时,才可使用斜体(默认),其余情况都应使用直立体(罗马体)
KaTeX parse error: Got function '\rm' with no arguments as subscript at position 29: …,...,n,为变量\\ x_\̲r̲m̲ ̲i :\rm i 表示“输入”…
罗马体 | 文本 |
---|---|
\rm(roman) | \text |
A B , A B \text{A B},\rm{A B} A B,AB
A B , A B A B \text A B,\rm A B\\ {\rm A} B AB,ABAB
\rm 对其后所有字符都起作用
1 2 , 1 2 1 x + y 1 x + 1 y + 1 1 x + 1 y + 1 \frac{1}{2},\frac 1 2\\ \frac 1 {x+y}\\ \frac {\frac 1 x+1} {y+1} \\ \frac {\dfrac 1 x+1} {y+1} 21,21x+y1y+1x1+1y+1x1+1
调整分式的显示比例大小:\dfrac (display-style)
2 , x + y , x 3 \sqrt 2,\sqrt{x+y},\sqrt[3]x 2,x+y,3x
$$
\ge,\le,\equiv,\approx \
+,-\
\times,\cdot,\div\
\pm,\mp\
<,\gg,\ll,\ne\
\cap,\cup,\in,\notin,\subseteq,\subsetneqq,\varnothing\
\forall,\exists,\nexists\
\because,\therefore\
\R,\Q,\N,\Z_+\
\mathcal F,\mathscr F
$$
\mathscr(script,手写字体)
⋯ , ⋮ , … , ⋱ \cdots,\vdots,\dots,\ddots ⋯,⋮,…,⋱
\vdots(vertical,垂直的)
\ddots(diagonal,对角的)
∞ , ∂ , ∇ , ∝ , ° \infty,\partial,\nabla,\propto,° ∞,∂,∇,∝,°
\propto (proportional to,正比于)
sin x , sec x , cos x log 2 x , ln x , lg x max x , MSE ( x ) : 直立体 M S E :不正确 \sin x,\sec x,\cos x\\ \log_2 x,\ln x,\lg x\\ \max x,\text{MSE}(x):直立体\\ MSE:不正确 sinx,secx,cosxlog2x,lnx,lgxmaxx,MSE(x):直立体MSE:不正确
lim x → 0 x sin x \lim\limits_{x \to 0}\frac x {\sin x} x→0limsinxx
∑ , ∏ ∑ i , ∑ i = 0 N \sum,\prod\\ \sum_i,\sum_{i=0}^N\\ ∑,∏i∑,i=0∑N
∑ i = 1 n x i ∏ i = 1 n x i \frac{\sum_{i=1}^n x_i} {\prod_{i=1}^n x_i}\\ ∏i=1nxi∑i=1nxi
∑ i = 1 n x i ∏ i = 1 n x i \frac{\sum\limits_{i=1}^n x_i} {\prod\limits_{i=1}^n x_i} i=1∏nxii=1∑nxi
\limits : 将参数从求和符号右侧转移到上下侧
∫ ∬ , ∭ , ∮ , ∯ ∫ − ∞ 0 f ( x ) d x : 错误写法,d前应该有空格 ∫ − ∞ 0 f ( x ) d x : 正确写法 \int \\ \iint,\iiint,\oint,\oiint\\ \int_{-\infty}^0 f(x) \text d x :错误写法,\text d前应该有空格\\ \int_{-\infty}^0 f(x) \, \text d x :正确写法 ∫∬,∭,∮,∬∫−∞0f(x)dx:错误写法,d前应该有空格∫−∞0f(x)dx:正确写法
x ⃗ , A B → x ˉ , A ‾ a ^ , a ˙ \vec x,\overrightarrow {AB}\\ \bar x,\overline{A}\\ \hat a,\dot a x,ABxˉ,Aa^,a˙
← , ⇐ ↑ , ↓ , ↕ ↗ , ↙ , ↖ , ↘ \leftarrow,\Leftarrow\\ \uparrow,\downarrow,\updownarrow\\ \nearrow,\swarrow,\nwarrow,\searrow ←,⇐↑,↓,↕↗,↙,↖,↘
[ ( ) ] , { , } ⌈ , ⌉ , ⌊ , ⌋ ( 0 , 1 a ] ∂ x ∂ y ∣ x = 0 [()],\{,\}\\ \lceil,\rceil,\lfloor,\rfloor\\ \left(0,\frac 1 a\right]\\ \left. \frac{\partial x}{\partial y} \right |_{x=0} [()],{,}⌈,⌉,⌊,⌋(0,a1]∂y∂x x=0
\left ( : 高度自适应
\left . : 左侧虚拟匹配
a = b + c + b = 2 b + b \begin{align} a=b+c+b\\ =2b+b \end{align} a=b+c+b=2b+b
默认是右对齐
a = b + c + b = 2 b + c \begin{align} a&=b+c+b\\ &=2b+c \end{align} a=b+c+b=2b+c
& 处进行匹配,最后再等号处对齐
f ( x ) = { sin x , − π ≤ x ≤ π 0 , 其他 f(x)= \begin{cases} \sin x,&-\pi\le x \le \pi \\ 0,&\text{其他} \end{cases} f(x)={sinx,0,−π≤x≤π其他
a b ⋯ c ⋮ ⋮ ⋱ ⋮ e f ⋯ g \begin{matrix} a & b & \cdots & c \\ \vdots &\vdots &\ddots & \vdots \\ e & f & \cdots &g \end{matrix} a⋮eb⋮f⋯⋱⋯c⋮g
无外括号
[ a b ⋯ c ⋮ ⋮ ⋱ ⋮ e f ⋯ g ] \begin{bmatrix} a & b & \cdots & c \\ \vdots &\vdots &\ddots & \vdots \\ e & f & \cdots &g \end{bmatrix} a⋮eb⋮f⋯⋱⋯c⋮g
bmartix ( bracket, 方括号)
( a b ⋯ c ⋮ ⋮ ⋱ ⋮ e f ⋯ g ) \begin{pmatrix} a & b & \cdots & c \\ \vdots &\vdots &\ddots & \vdots \\ e & f & \cdots &g \end{pmatrix} a⋮eb⋮f⋯⋱⋯c⋮g
pmatrix (parenthesis,圆括号)
∣ a b ⋯ c ⋮ ⋮ ⋱ ⋮ e f ⋯ g ∣ \begin{vmatrix} a & b & \cdots & c \\ \vdots &\vdots &\ddots & \vdots \\ e & f & \cdots &g \end{vmatrix} a⋮eb⋮f⋯⋱⋯c⋮g
vmatrix (vertical bar,竖向短线)
A B T \bf A\\ \bf B^{\rm T} ABT
\bf (blod face,粗体)
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac 1 {\sqrt {2\pi}\sigma} \text{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ1e−2σ2(x−μ)2
f ( x ) = 1 2 π σ e [ − ( x − μ ) 2 2 σ 2 ] f(x)=\frac 1 {\sqrt {2\pi} \sigma}\text{e}\left [ -\frac{(x-\mu)^2}{2\sigma^2}\right] f(x)=2πσ1e[−2σ2(x−μ)2]
lim N → ∞ P { ∣ I ( α i ) N − H ( s ) ∣ < ε } \lim\limits_{N \to \infty} P \left\{ \left| \frac{I(\alpha_i)}{N}-H(s)\right|<\varepsilon\right\} N→∞limP{ NI(αi)−H(s) <ε}
x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x(n)=\frac 1 {2\pi} \int_{-\pi}^{\pi} X(e^{\text{j}\omega})e^{\text{j}\omega n}\,\text{d}\omega x(n)=2π1∫−ππX(ejω)ejωndω
B ⃗ ( r ⃗ ) = μ 0 4 π ∮ C I d l ⃗ × R ⃗ R 3 = μ 0 4 π ∫ V J ⃗ V × R ⃗ R 3 d V ′ \begin{align} \vec B(\vec r) &=\frac{\mu_0}{4\pi} \oint_C \frac{I\, \text{d} \vec l\times \vec R}{R^3} \\ &=\frac {\mu_0} {4\pi} \int_V \frac {\vec J_V \times \vec R}{R^3}\, \text{d} V' \end{align} B(r)=4πμ0∮CR3Idl×R=4πμ0∫VR3JV×RdV′