基于ResNet18网络完成图像分类任务

目录

1 数据处理

        1.1 数据集介绍

        1.2 数据读取 

        1.3 构造Dataset类

2 模型构建

 3 模型训练

4 模型评价

5 模型预测 

 6 什么是预训练模型和迁移学习

7 比较“使用预训练模型”和“不使用预训练模型”的效果。

总结


在本实践中,我们实践一个更通用的图像分类任务。

图像分类(Image Classification)是计算机视觉中的一个基础任务,将图像的语义将不同图像划分到不同类别。很多任务也可以转换为图像分类任务。比如人脸检测就是判断一个区域内是否有人脸,可以看作一个二分类的图像分类任务。

  • 数据集:CIFAR-10数据集,
  • 网络:ResNet18模型,
  • 损失函数:交叉熵损失,
  • 优化器:Adam优化器,Adam优化器的介绍参考NNDL第7.2.4.3节。
  • 评价指标:准确率

引入头文件:

import os
import pickle
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from PIL import Image
import torch.nn.functional as F
import torch.optim as opt
from nndl import RunnerV3, Accuracy
from nndl import plot

 nndl.py

import torch
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class RunnerV3(object):
    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric  # 只用于计算评价指标

        # 记录训练过程中的评价指标变化情况
        self.dev_scores = []

        # 记录训练过程中的损失函数变化情况
        self.train_epoch_losses = []  # 一个epoch记录一次loss
        self.train_step_losses = []  # 一个step记录一次loss
        self.dev_losses = []

        # 记录全局最优指标
        self.best_score = 0

    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型切换为训练模式
        self.model.train()

        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_steps = kwargs.get("log_steps", 100)
        # 评价频率
        eval_steps = kwargs.get("eval_steps", 0)

        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")

        custom_print_log = kwargs.get("custom_print_log", None)

        # 训练总的步数
        num_training_steps = num_epochs * len(train_loader)

        if eval_steps:
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None!')
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')

        # 运行的step数目
        global_step = 0

        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            # 用于统计训练集的损失
            total_loss = 0
            for step, data in enumerate(train_loader):
                X, y = data
                # 获取模型预测
                logits = self.model(X.to(device))
                loss = self.loss_fn(logits, y.long().to(device))  # 默认求mean
                total_loss += loss

                # 训练过程中,每个step的loss进行保存
                self.train_step_losses.append((global_step, loss.item()))

                if log_steps and global_step % log_steps == 0:
                    print(
                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")

                # 梯度反向传播,计算每个参数的梯度值
                loss.backward()

                if custom_print_log:
                    custom_print_log(self)

                # 小批量梯度下降进行参数更新
                self.optimizer.step()
                # 梯度归零
                self.optimizer.zero_grad()

                # 判断是否需要评价
                if eval_steps > 0 and global_step > 0 and \
                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")

                    # 将模型切换为训练模式
                    self.model.train()

                    # 如果当前指标为最优指标,保存该模型
                    if dev_score > self.best_score:
                        self.save_model(save_path)
                        print(
                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")
                        self.best_score = dev_score

                global_step += 1

            # 当前epoch 训练loss累计值
            trn_loss = (total_loss / len(train_loader)).item()
            # epoch粒度的训练loss保存
            self.train_epoch_losses.append(trn_loss)

        print("[Train] Training done!")

    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None

        # 将模型设置为评估模式
        self.model.eval()

        global_step = kwargs.get("global_step", -1)

        # 用于统计训练集的损失
        total_loss = 0

        # 重置评价
        self.metric.reset()

        # 遍历验证集每个批次
        for batch_id, data in enumerate(dev_loader):
            X, y = data

            # 计算模型输出
            logits = self.model(X.to(device))

            # 计算损失函数
            loss = self.loss_fn(logits, y.long().to(device)).item()
            # 累积损失
            total_loss += loss

            # 累积评价
            self.metric.update(logits, y.to(device))

        dev_loss = (total_loss / len(dev_loader))
        dev_score = self.metric.accumulate()

        # 记录验证集loss
        if global_step != -1:
            self.dev_losses.append((global_step, dev_loss))
            self.dev_scores.append(dev_score)

        return dev_score, dev_loss

    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, x, **kwargs):
        # 将模型设置为评估模式
        self.model.eval()
        # 运行模型前向计算,得到预测值
        logits = self.model(x.to(device))
        return logits

    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)

    def load_model(self, model_path):
        state_dict = torch.load(model_path)
        self.model.load_state_dict(state_dict)



class Accuracy():
    def __init__(self, is_logist=True):
        # 用于统计正确的样本个数
        self.num_correct = 0
        # 用于统计样本的总数
        self.num_count = 0

        self.is_logist = is_logist

    def update(self, outputs, labels):

        # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务
        if outputs.shape[1] == 1:  # 二分类
            outputs = torch.squeeze(outputs, dim=-1)
            if self.is_logist:
                # logist判断是否大于0
                preds = torch.tensor((outputs >= 0), dtype=torch.float32)
            else:
                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
                preds = torch.tensor((outputs >= 0.5), dtype=torch.float32)
        else:
            # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
            preds = torch.argmax(outputs, dim=1)

        # 获取本批数据中预测正确的样本个数
        labels = torch.squeeze(labels, dim=-1)
        batch_correct = torch.sum((preds == labels).float()).clone().detach()
        batch_count = len(labels)

        # 更新num_correct 和 num_count
        self.num_correct += batch_correct
        self.num_count += batch_count

    def accumulate(self):
        # 使用累计的数据,计算总的指标
        if self.num_count == 0:
            return 0
        return self.num_correct / self.num_count

    def reset(self):
        # 重置正确的数目和总数
        self.num_correct = 0
        self.num_count = 0

    def name(self):
        return "Accuracy"



def plot(runner, fig_name):
    plt.figure(figsize=(10, 5))

    plt.subplot(1, 2, 1)
    train_items = runner.train_step_losses[::30]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]

    plt.plot(train_steps, train_losses, color='#8E004D', label="Train loss")
    if runner.dev_losses[0][0] != -1:
        dev_steps = [x[0] for x in runner.dev_losses]
        dev_losses = [x[1] for x in runner.dev_losses]
        plt.plot(dev_steps, dev_losses, color='#E20079', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='x-large')
    plt.xlabel("step", fontsize='x-large')
    plt.legend(loc='upper right', fontsize='x-large')

    plt.subplot(1, 2, 2)
    # 绘制评价准确率变化曲线
    dev_scores_cpu = [t.cpu() for t in runner.dev_scores]
    if runner.dev_losses[0][0] != -1:
        plt.plot(dev_steps, dev_scores_cpu,
                 color='#E20079', linestyle="--", label="Dev accuracy")
    else:
        plt.plot(list(range(len(runner.dev_scores))), dev_scores_cpu,
                 color='#E20079', linestyle="--", label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='x-large')
    plt.xlabel("step", fontsize='x-large')
    plt.legend(loc='lower right', fontsize='x-large')

    plt.savefig(fig_name)
    plt.show()

1 数据处理

        1.1 数据集介绍

CIFAR-10数据集包含了10种不同的类别、共60,000张图像,其中每个类别的图像都是6000张,图像大小均为 $32\times32$ 像素。CIFAR-10数据集的示例如图所示。

基于ResNet18网络完成图像分类任务_第1张图片

        1.2 数据读取 

在本实验中,将原始训练集拆分成了train_set、dev_set两个部分,分别包括40 000条和10 000条样本。将data_batch_1到data_batch_4作为训练集,data_batch_5作为验证集,test_batch作为测试集。

最终的数据集构成为:

  •  训练集:40 000条样本。
  •  验证集:10 000条样本。
  •  测试集:10 000条样本。

读取一个batch数据的代码如下所示:

def load_cifar10_batch(folder_path, batch_id=1, mode='train'):
    if mode == 'test':
        file_path = os.path.join(folder_path, 'test_batch')
    else:
        file_path = os.path.join(folder_path, 'data_batch_' + str(batch_id))

    # 加载数据集文件
    with open(file_path, 'rb') as batch_file:
        batch = pickle.load(batch_file, encoding='latin1')

    imgs = batch['data'].reshape((len(batch['data']), 3, 32, 32)) / 255.
    labels = batch['labels']

    return np.array(imgs, dtype='float32'), np.array(labels)


imgs_batch, labels_batch = load_cifar10_batch(
    folder_path=r'C:\Users\29134\PycharmProjects\pythonProject\DL\实验13\cifar-10-batches-py',
    batch_id=1, mode='train')

查看数据的维度:

# 打印一下每个batch中X和y的维度
print("batch of imgs shape: ", imgs_batch.shape, "batch of labels shape: ", labels_batch.shape)

 可视化观察其中的一张样本图像和对应的标签,代码如下所示:

image, label = imgs_batch[1], labels_batch[1]
print("The label in the picture is {}".format(label))
plt.figure(figsize=(2, 2))
plt.imshow(image.transpose(1, 2, 0))
plt.savefig('cnn-car.pdf')

基于ResNet18网络完成图像分类任务_第2张图片

        1.3 构造Dataset类

class CIFAR10Dataset(Dataset):
    def __init__(self, folder_path=r'C:\Users\29134\PycharmProjects\pythonProject\DL\实验13\cifar-10-batches-py',
                 mode='train'):
        if mode == 'train':
            # 加载batch1-batch4作为训练集
            self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=1, mode='train')
            for i in range(2, 5):
                imgs_batch, labels_batch = load_cifar10_batch(folder_path=folder_path, batch_id=i, mode='train')
                self.imgs, self.labels = np.concatenate([self.imgs, imgs_batch]), np.concatenate(
                    [self.labels, labels_batch])
        elif mode == 'dev':
            # 加载batch5作为验证集
            self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=5, mode='dev')
        elif mode == 'test':
            # 加载测试集
            self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, mode='test')
        self.transforms = transforms.Compose([transforms.Resize(32), transforms.ToTensor(),
                                              transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
                                                                   std=[0.2023, 0.1994, 0.2010])])

    def __getitem__(self, idx):
        img, label = self.imgs[idx], self.labels[idx]
        img = self.transforms(Image.fromarray((img.reshape([32,32,3]) * 255).astype('uint8')))
        return img, label

    def __len__(self):
        return len(self.imgs)


train_dataset = CIFAR10Dataset(
    folder_path=r'C:\Users\29134\PycharmProjects\pythonProject\DL\实验13\cifar-10-batches-py', mode='train')
dev_dataset = CIFAR10Dataset(folder_path=r'C:\Users\29134\PycharmProjects\pythonProject\DL\实验13\cifar-10-batches-py',
                             mode='dev')
test_dataset = CIFAR10Dataset(folder_path=r'C:\Users\29134\PycharmProjects\pythonProject\DL\实验13\cifar-10-batches-py',
                              mode='test')

2 模型构建

使用pytorch中的Resnet18进行图像分类实验。

resnet18_model = resnet18(pretrained=True)

 3 模型训练

复用RunnerV3类,实例化RunnerV3类,并传入训练配置。

使用训练集和验证集进行模型训练,共训练30个epoch。

在实验中,保存准确率最高的模型作为最佳模型。代码实现如下:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 学习率大小
lr = 0.001
# 批次大小
batch_size = 64
# 加载数据
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dev_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
# 定义网络
model = resnet18_model.to(device)
# 定义优化器,这里使用Adam优化器以及l2正则化策略,相关内容在7.3.3.2和7.6.2中会进行详细介绍
optimizer = opt.Adam(lr=lr, params=model.parameters(), weight_decay=0.005)
# 定义损失函数
loss_fn = F.cross_entropy
loss_fn = loss_fn
# 定义评价指标
metric = Accuracy(is_logist=True)
# 实例化RunnerV3
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 3000
eval_steps = 3000
runner.train(train_loader, dev_loader, num_epochs=30, log_steps=log_steps,
             eval_steps=eval_steps, save_path="best_model.pdparams")

基于ResNet18网络完成图像分类任务_第3张图片 可视化观察训练集与验证集的准确率及损失变化情况。

plot(runner, fig_name='cnn-loss4.pdf')

基于ResNet18网络完成图像分类任务_第4张图片

4 模型评价

使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失情况。代码实现如下:

# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))

 

5 模型预测 

同样地,也可以使用保存好的模型,对测试集中的数据进行模型预测,观察模型效果,具体代码实现如下:

#获取测试集中的一个batch的数据
X, label = next(iter(test_loader))
logits = runner.predict(X,dim=1)
#多分类,使用softmax计算预测概率
pred = F.softmax(logits)
# print(pred)
#获取概率最大的类别
pred_class = torch.argmax(pred[2][0]).cpu().numpy()
label = label[2].item()
#输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label, pred_class))
#可视化图片
plt.figure(figsize=(2, 2))
imgs, labels = load_cifar10_batch(folder_path=r'C:\Users\29134\PycharmProjects\pythonProject\DL\实验13\cifar-10-batches-py',mode='test')
plt.imshow(imgs[2].transpose(1,2,0))
plt.savefig('cnn-test-vis.pdf')

 6 什么是预训练模型和迁移学习

什么是预训练呢?举例子进行简单的介绍
假设已有A训练集,先用A对网络进行预训练,在A任务上学会网络参数,然后保存以备后用,当来一个新的任务B,采取相同的网络结构,网络参数初始化的时候可以加载A学习好的参数,其他的高层参数随机初始化,之后用B任务的训练数据来训练网络,当加载的参数保持不变时,称为"frozen",当加载的参数随着B任务的训练进行不断的改变,称为“fine-tuning”,即更好地把参数进行调整使得更适合当前的B任务

对于迁移学习,就是将在任务A上学习的网络参数加载到B的过程叫做迁移学习

为什么会有预训练,大概概括为以下几点:

  • 数据效率:大规模数据在深度学习中扮演着至关重要的角色,然而获取标注数据是一项昂贵和耗时的工作。预训练可以大大提升训练模型的数据量提高准确性,大大提高泛化能力。
  • 知识共享:在预训练模型中,已经学习到的知识可以被迁移到新的任务中,从而减少了针对新任务的训练成本和时间。
  • 解决梯度消失问题:通过预训练模型,可以使得初始的权重参数更加合理,从而缓解了这些问题。

7 比较“使用预训练模型”和“不使用预训练模型”的效果。

基于ResNet18网络完成图像分类任务_第5张图片

基于ResNet18网络完成图像分类任务_第6张图片

通过实验结果我们可以发现,使用预训练模型收敛速度更快,更稳定(可视化误差结果),准确率更高(运行结果)。 

总结

最开始没用gpu跑,跑了两天,都快跑麻了,因为总是跑半天报一个错,跑半个点报个错后来改为了gpu,效果就好了很多,博客会在过几天详细更新(因为我流了,发烧好几天先把作业内容写完了,展开部分之后再写)

你可能感兴趣的:(DL模型,人工智能)