先看目录,除了2018年比较怪,其他最多2个D(数学只有两个弟弟,一个大弟,一个小弟)
-数据分析-排列组合-组合-C运算
-数列-等比数列-等比中项;勾股定理
21.某直角三角形的三边长 , , 成等比数列,则能确定公比的值
(1) 是直角边长
(2) 是斜边长
D-几何-解析几何-位置-线圆位置-相离-也还是转为圆心点到直线的距离公式
21.设x ,y为实数,则能确定 x ≤ y x≤y x≤y。
(1) x 2 ≤ y − 1 x^2≤y-1 x2≤y−1。
(2) x 2 + ( y − 2 ) 2 ≤ 2 x^2+(y-2)^2≤2 x2+(y−2)2≤2。
25.给定两个直角三角形,则这两个直角三角形相似。
(1)每个直角三角形边长成等比数列。
(2)每个直角三角形边长成等差数列。
-几何-立方几何
21、在长方体中,能确定长方体的体对角线长度。
(1)已知长方体一个顶点的三个面的面积。
(2)已知长方体一个顶点的三个面的面对角线的长度。
-数据分析-概率已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率
17、有甲乙两袋奖券,获奖率分别为 p 和q ,某人从两袋中各随机抽取 1 张奖券,则此人获奖的概率不小于 3 2 \frac{3}{2} 23
(1) 已经 p + q = 1 p + q = 1 p+q=1
(2) 已知 p q = 1 4 pq=\frac{1}{4} pq=41
-代数-方程-整数不定方程
20、关于 x 的方程 x 2 + a x + b = 1 x^2+ax+b=1 x2+ax+b=1有实根
(1) a + b = 0 a +b =0 a+b=0
(2) a − b = 0 a −b =0 a−b=0
-D-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
18.设 m , n m,n m,n是正整数,则能确定 m + n m+n m+n的值。
(1) 1 m + 3 n = 1 {1\over{m}}+{3\over{n}}=1 m1+n3=1
(2) 1 m + 2 n = 1 {1\over{m}}+{2\over{n}}=1 m1+n2=1
-代数-不等式-均值不等式
19.甲、乙、丙 3 人年收入成等比数列,则能确定乙的年收入最大值。
(1)已知甲丙两人年收入之和。
(2)已知甲丙两人年收入之积。
-几何-平面几何-长方形
20.如图所示,在矩形ABCD中AE=FC,则三角形AED与四边形 BCFE能拼成一个直角三角形。
(1)EB=2FC
(2)ED=EF
-应用题-增长率
23.如果甲公司年终奖总额增加 25%,乙公司年终奖总额减少 10%,两者相等,则能确定两公司的员工人数之比。
(1)甲公司的人均年终奖与乙公司相同。
(2)两公司的员工数之比与两公司年终奖总额之比相等。
D。本题考查比例问题。设甲公司的年终奖总额为a,乙公司的年终奖总额为b,则有a(1+25%)=b(1-10%),简化得两公司年终奖总额之比a/b=18/25,结合条件(1),可得两公司员工人数之比与奖金总额之比相等,故(1)充分,条件(2)显然充分。
秒杀:等价条件题,选项(1)是(2)充分必要条件,都选D。∵(2)甲员工/乙员工=甲年终/乙年终,得:甲年终/甲员工=乙年终/乙员工,得:甲人均年终奖=乙人均年终奖。
-函数-复合函数
25.设函数 f ( x ) = x 2 + a x f(x)=x^2+ax f(x)=x2+ax ,则 f (x) 最小值与 f ( f ( x ) ) f(f(x)) f(f(x))的最小值相等。
(1) a ≥ 2 a ≥ 2 a≥2
(2) a ≤ 0 a ≤ 0 a≤0
-应用题-工程
16.某人需要处理若干份文件,第一个小时处理了全部文件的 15,第二个小时处理了剩余文件的 14,则此人需要处理的文件共 25 份。
(1)前两小时处理了 10 份文件
(2)第二小时处理了 5 份文件
-D-代数-方程-一元二次方程-根的分布
25.已知 f ( x ) = x 2 + a x + b f(x)=x^2+ax+b f(x)=x2+ax+b,则 0 ≤ f ( 1 ) ≤ 1 0≤f(1)≤1 0≤f(1)≤1
(1) f ( x ) f(x) f(x) 在区间[ 0,1 ]中有两个零点。
(2) f ( x ) f(x) f(x) 在区间[ 1,2 ]中有两个零点。
-几何-解析几何-直线与圆的位置关系
16.圆盘 x 2 + y 2 ≤ 2 ( x + y ) x^2+y^2≤2(x+y) x2+y2≤2(x+y)被直线 L 分成面积相等的两部分。
(1) L: x + y = 2 x + y = 2 x+y=2
(2) L: 2 x − y = 1 2x-y= 1 2x−y=1
-数列-等差数列-前n项和的最值
23.已知数列{ a n a_n an}是公差大于零的等差数列,{ S n S_n Sn}是{ a n a_n an}的前n 项和。则 S n ≥ S 10 , n = 1 , 2 , . . . S_n≥S_{10},n=1,2,... Sn≥S10,n=1,2,...
(1) a 10 = 0 a_{10}=0 a10=0
(2) a 11 a 10 < 0 a_{11}a_{10}<0 a11a10<0
-数据分析-概率-已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率-独立事件-若干独立事件同时发生的概率,等于这些事件单独发生的概率的乘积=分步乘-
20.档案馆在一个库房安装了n个烟火感应报警器,每个报警器遇到烟火成功报警的概率为 p p p。该库房遇烟火发出报警的概率达到 0.999 0.999 0.999。
(1) n = 3 , p = 0.9 n = 3,p = 0.9 n=3,p=0.9
(2) n = 2 , p = 0.97 n = 2,p = 0.97 n=2,p=0.97
-数列-递推公式-难度升级-中间段才出现周期
25.设 a 1 = 1 , a 2 = k , . . . , a n + 1 = ∣ a n − a n − 1 ∣ , ( n ≥ 2 ) a_1=1,a_2=k,...,a_{n+1}=|a_n-a_{n-1}|,(n≥2) a1=1,a2=k,...,an+1=∣an−an−1∣,(n≥2) ,则 a 100 + a 101 + a 102 = 2 a_{100}+a_{101}+a_{102}=2 a100+a101+a102=2
(1) k = 2 k = 2 k=2
(2)k 是小于 20 的正整数