Python 爬虫之简单的爬虫(四)

爬取动态网页(下)


文章目录

  • 爬取动态网页(下)
  • 前言
  • 一、大致内容
  • 二、基本思路
  • 三、代码编写
    • 1.引入库
    • 2.加载网页数据
    • 3.获取并保存
    • 4.保存文档
  • 总结


前言

上篇主要讲了如何去爬取数据,这篇来讲一下如何在获取的同时将数据整理保存到excel文档中。

上一篇《Python 爬虫之简单的爬虫(三)》链接:https://blog.csdn.net/weixin_57061292/article/details/135073002


一、大致内容

以上一篇文章为基础。在原来的代码上进行增添和修改。
增添的内容是:Python操作文档的一些库等相关代码。
修改的内容是:对上一篇的《3.获取指定数据》进行修改,遍历获取的数据的同时把它们添加到新创建的excel文档里。

运行效果图:
Python 爬虫之简单的爬虫(四)_第1张图片


二、基本思路

接着上一篇的基本思路继续写:

  • 第五步:导入一下需要的新的软件库
  • 第六步:主要是将上一篇《3.获取指定数据》里面print()替换成将数据保存到文档中的操作。
  • 第七步:删除文档中默认的Sheet工作表,并保存文档。

三、代码编写

1.引入库

代码如下:

# 以上是原来的
from selenium import webdriver
from selenium.webdriver.common.by import By
import time

# 以下是新添加的
from openpyxl.styles import Font, Alignment, Border, Side
import openpyxl
import re

2.加载网页数据

代码如下:

# 这些是原来的
driver = webdriver.Firefox()
driver.get("https://movie.douban.com/annual/2022/?fullscreen=1&source=movie_navigation")
time.sleep(5)
driver.execute_script('window.scrollTo(0, document.body.scrollHeight);')

# 这些是新添加的
# 创建实例对象
wb = openpyxl.Workbook()

这里新添加一个对象实例,用来生成excel文档用的。


3.获取并保存

代码如下:

# 获取四大影视类型标题
comment_Titles = driver.find_elements(by=By.CSS_SELECTOR, value='.module-top10-grid-chart-title')
# 创建以四大影视类型标题的四个工作表
i = 0
for comment in comment_Titles:
    # 创建工作表
    ws = wb.create_sheet(index=i, title=comment.text)
    # 冻结首行
    ws.freeze_panes = 'A2'
    # 首行居中、加粗、加框线
    # 将电影中的元素作为标题添加到每个工作表的第一行中
    cell_titles = ['片名', '演员', '评分', '产地']
    index = 1
    for title in cell_titles:
        wc = ws.cell(row=1, column=index, value=title)
        # 加粗
        wc.font = Font(bold=True)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
        # 水平垂直居中
        wc.alignment = Alignment(horizontal='center', vertical='center')
        index += 1

    i += 1

# 获取每个影视类型里的第一名片名
which_mo_list = driver.find_elements(by=By.CSS_SELECTOR, value='.subject-top-title')
# 将第一名的片名写入到每个工作表中
a = 0
for each_mo in which_mo_list:
    movie_title = each_mo.get_attribute('title')
    if a == 0:
        ws = wb['评分最高华语电影']
        wc = ws.cell(column=1, row=2, value=f'《{movie_title}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif a == 1:
        ws = wb['评分最高外语电影']
        wc = ws.cell(column=1, row=2, value=f'《{movie_title}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif a == 2:
        ws = wb['年度冷门佳片']
        wc = ws.cell(column=1, row=2, value=f'《{movie_title}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif a == 3:
        ws = wb['华语剧集']
        wc = ws.cell(column=1, row=2, value=f'《{movie_title}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    a += 1

# 获取每个影视类型里的第一名评分
movies_top_scores_list = driver.find_elements(by=By.CSS_SELECTOR, value='.rating-card-value')
# 将第一名的评分写入到每个工作表中
c = 0
for movie_top_score in movies_top_scores_list:
    score = movie_top_score.text
    if c == 0:
        ws = wb['评分最高华语电影']
        wc = ws.cell(column=3, row=2, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif c == 1:
        ws = wb['评分最高外语电影']
        wc = ws.cell(column=3, row=2, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif c == 2:
        ws = wb['年度冷门佳片']
        wc = ws.cell(column=3, row=2, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif c == 3:
        ws = wb['华语剧集']
        wc = ws.cell(column=3, row=2, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    c += 1

# 获取所有影片的人物信息
persons_list = driver.find_elements(by=By.CSS_SELECTOR, value='.subject-credit')
# 将演员信息添加到各自的工作表中
b = 0
for person in persons_list:
    person_title = person.find_elements(by=By.TAG_NAME, value='p')
    for title in person_title:
        # 演员信息
        actor = title.text

        if 0 < b <= 10:
            ws = wb['评分最高华语电影']
            wc = ws.cell(column=2, row=b+1, value=actor)
            # 单元格左右上下加框线
            wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                               top=Side(border_style='thin'), bottom=Side(border_style='thin'))
        elif 11 < b <= 21:
            ws = wb['评分最高外语电影']
            wc = ws.cell(column=2, row=b-10, value=actor)
            # 单元格左右上下加框线
            wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                               top=Side(border_style='thin'), bottom=Side(border_style='thin'))
        elif 22 < b <= 32:
            ws = wb['年度冷门佳片']
            wc = ws.cell(column=2, row=b-21, value=actor)
            # 单元格左右上下加框线
            wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                               top=Side(border_style='thin'), bottom=Side(border_style='thin'))
        elif 33 < b <= 43:
            ws = wb['华语剧集']
            wc = ws.cell(column=2, row=b-32, value=actor)
            # 单元格左右上下加框线
            wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                               top=Side(border_style='thin'), bottom=Side(border_style='thin'))
        b += 1

# 获取所有影片的片名(每个影视类型里的第一名除外)
movies_title_list = driver.find_elements(by=By.CSS_SELECTOR, value='.subjects-rank-title')
# 将片名写入到每个工作表中
d = 0
for movie_title in movies_title_list:
    # 使用正则表达式提取中文文本
    # 使用正则表达式 [\u4e00-\u9fff]+
    # 匹配一个或多个连续的中文字符,并使用 re.search().group(1) 获取第一个括号内的匹配内容,即中文文本。
    chinese_text = re.search(r'([\u4e00-\u9fff]+)', movie_title.text).group(1)
    if 0 <= d <= 8:
        ws = wb['评分最高华语电影']
        wc = ws.cell(column=1, row=d+3, value=f'《{chinese_text}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 9 <= d <= 17:
        ws = wb['评分最高外语电影']
        wc = ws.cell(column=1, row=d-6, value=f'《{chinese_text}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 18 <= d <= 26:
        ws = wb['年度冷门佳片']
        wc = ws.cell(column=1, row=d-15, value=f'《{chinese_text}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 27 <= d <= 35:
        ws = wb['华语剧集']
        wc = ws.cell(column=1, row=d-24, value=f'《{chinese_text}》')
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    d += 1

# 获取影片的产地(每个影视类型里的第一名除外)
addresses_list = driver.find_elements(by=By.CSS_SELECTOR, value='.subjects-rank-credits > div:nth-child(2)')
# 将产地名称添加到每个工作表中
e = 0
for addresses in addresses_list:
    address_text = addresses.text
    if 0 <= e <= 8:
        ws = wb['评分最高华语电影']
        wc = ws.cell(column=4, row=e + 3, value=address_text)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 9 <= e <= 17:
        ws = wb['评分最高外语电影']
        wc = ws.cell(column=4, row=e - 6, value=address_text)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 18 <= e <= 26:
        ws = wb['年度冷门佳片']
        wc = ws.cell(column=4, row=e - 15, value=address_text)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 27 <= e <= 35:
        ws = wb['华语剧集']
        wc = ws.cell(column=4, row=e - 24, value=address_text)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    e += 1

# 获取影片评分(每个影视类型里的第一名除外)
movies_scores_list = driver.find_elements(by=By.CSS_SELECTOR, value='.subjects-rank-rating')
# 将评分输入到每个工作表中
f = 0
for movie_score in movies_scores_list:
    score = movie_score.text
    if 0 <= f <= 8:
        ws = wb['评分最高华语电影']
        wc = ws.cell(column=3, row=f + 3, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 9 <= f <= 17:
        ws = wb['评分最高外语电影']
        wc = ws.cell(column=3, row=f - 6, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 18 <= f <= 26:
        ws = wb['年度冷门佳片']
        wc = ws.cell(column=3, row=f - 15, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    elif 27 <= f <= 35:
        ws = wb['华语剧集']
        wc = ws.cell(column=3, row=f - 24, value=score)
        # 单元格左右上下加框线
        wc.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'),
                           top=Side(border_style='thin'), bottom=Side(border_style='thin'))
    f += 1

代码很多哈。但都是有规律的。上一篇是获取到数据把它变成一个列表,然后遍历打印出来它。

这里变了。不是遍历打印了,改成遍历保存了。因为上面获取的每个列表里面的元素顺序是有规律的(需要大家自己动手去体会啦),结合一定的逻辑判断,分别把它们填写到四个类型的工作表中去(再添加一些对表格美化的操作的代码)。


4.保存文档

代码如下:

del wb['Sheet']
wb.save(f'example{int(time.time())}.xlsx')

删除文档默认的Sheet工作表(没卵用),保存文档(默认保存到当前文件夹下)。


总结

其它的还好,主要是数据的遍历保存的逻辑判断部分的代码,这个需要大家手动去搞一遍才能明白。这篇用的是Python 3.11.6 版本的环境,基本环境因素要注意哦,要不然就算一样的代码运行起来也可能会有问题。

你可能感兴趣的:(Python,爬虫,python,爬虫,开发语言)