- 大模型中的分词技术 BBPE
禅与计算机技术
深度学习大模型NLP深度学习nlp中文分词机器学习
一、OOV问题和多语言场景在自然语言处理(NLP)中,OOV(Out-of-Vocabulary)问题是指模型在处理文本时遇到未在词表中出现过的词汇,导致无法有效处理这些词汇的情况。这一问题在多语言场景中尤为突出,因为不同语言在词汇、语法结构和表达方式上存在显著差异,单一语言的词表难以全面覆盖多语言的复杂性。在多语言场景下的NLP任务中(如机器翻译、跨语言文本分类等),模型需要处理多种语言的混合文
- Command Center AI
由数入道
应急管理人工智能机器学习智能体
CommandCenterAI是一种先进的智能决策支持系统,专门用于应急指挥和资源调度管理,尤其在高压、复杂的环境中,如自然灾害应对、军事指挥、城市公共安全等领域,帮助决策者做出快速、有效的响应。它集成了大数据处理、实时情报分析、优化调度、决策模拟等功能,为指挥官提供多维度的决策支持。1.CommandCenterAI的核心功能1.1实时数据整合与情报分析CommandCenterAI需要从多个数
- 分形、大自然的分形几何、数据可视化、Python绘图
timedot-hj
python绘图指南-分形与数据可视化可视化python几何学算法
分形、大自然的分形几何、数据可视化、Python绘图中国传统中的『分形』大自然的分形几何数据可视化本系列采用turtle、matplotlib、numpy这三个Python工具,以分形与计算机图像处理的经典算法为实例,通过程序和图像,来帮助读者一步步掌握Python绘图和数据可视化的方法和技巧,并且让读者感受到“龙枝屈曲竞分形,瑰丽绮错千万状”的分形魅力。本系列共有八章,分别为海岸线有多长,基因与
- 【自然语言处理(NLP)】jieba分词的使用(分词模式、关键词提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍jieba分词的使用1.安装2.jieba分词模式2.1精确模式2.2全模式2.3搜索引擎模式2.4词性标注2.5加载自己的分词文件3.查看词频4.关键词提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言处理(NaturalLanguageProcessing,NLP)**是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。
- 改进候鸟优化算法之二:基于混沌映射的候鸟优化算法(MBO-CM)
搏博
算法人工智能r语言开发语言算法策略模式
基于混沌映射的候鸟优化算法(MigratingBirdsOptimizationbasedonChaoticMapping,MBO-CM)是一种结合了混沌映射与候鸟优化算法(MigratingBirdsOptimization,MBO)的优化方法。一、候鸟优化算法(MBO)简介候鸟优化算法是一种自然启发的元启发式算法,由Duman等人于2011年(也有说法为2012年)提出。该算法模拟候鸟在迁徙过
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 基于深度学习的舆论分析与检测系统应用与研究
计算机软件程序设计
机器学习深度学习人工智能舆论检测
【1】系统介绍研究背景随着互联网技术的迅猛发展和社会媒体平台的普及,信息传播的速度和范围达到了前所未有的水平。这一变化不仅极大地丰富了人们的社交生活,也为社会科学研究提供了新的视角和工具。舆论分析作为社会科学研究的一个重要分支,其目的是通过收集和分析网络上的公众意见和情感倾向,来了解人们对特定事件或话题的看法和态度。近年来,基于深度学习的自然语言处理技术取得了显著进步,这为提高舆论分析的准确性和效
- 自然语言处理(NLP)-总览图学习
汤姆和佩琦
NLP自然语言处理学习人工智能
文章目录自然语言处理(NLP)-总览图学习1.一张总览图的学习1.语音学(Phonology)2.形态学(Morphology)3.句法学(Syntax)4.语义学(Semantics)5.推理(Reasoning)小结自然语言处理(NLP)-总览图学习转自《Python自然语言处理第二版》1.一张总览图的学习这张图片展示了一个自然语言处理的流程模型,涵盖了从语音分析到应用推理和执行的多个阶段,每
- 读论文 Situated Instruction Following
MhZhou0412
人工智能深度学习python
研究背景:在传统的指令跟随范式中,代理独自在一个空房子里行动,导致语言使用既简单又人为“完整”。与此相反,我们提出了情境指令跟随(SIF),该方法拥抱真实世界通信中固有的不完全和模糊性,具有人的物理存在。情境指令的意义通过人类的过去行动和预期未来行为自然展开。在我们的设置中,指令具有以下特征:(1)模糊不清,(2)具有时间演变的意图,(3)可以通过代理的动态行动更精确地解释。SIF中的任务包括两个
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系
surfirst
LLMai语言模型chatgpt
简介近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4是OpenAI推出的新一代大模型,而GPT-4O和GPT-4O-mini是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较GPT-4、GPT-4O和GPT-4O-mini的区别与联系,帮助开发者更好地选择适合的模型。GPT-4是OpenAI发布的第四代通用预训练模型,具备强大的生成和理解能力,适
- 30个整数映射到1个字节,查表法实现小范围内常数时间素性判定
磁悬浮青蛙呱呱呱
数据结构C#MATLAB素性测试位图
想用查表法实现小范围内的常数时间的素性判定,怎样节省存储空间呢?自然是1个bit代表1个整数的素性,同时,偶数不用存,个位为5的整数不用存,只有个位为1、3、7、9的整数才可能是素数,也就是每20个整数中只有8个数可能是素数,正好1个字节。但本文的标题是30个整数映射到1个字节,说明上面的方法还有优化的潜力。让我们来考虑31~60这30个整数中最多有几个数可能是素数,所有偶数以及个位是5的数都是合
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- Agent实战系列:快速自定义Agent在业务线落地:从入门到高级[实现tool串联、多轮对话、多Agent动态编排、静态编排等]
汀、人工智能
AIAgentLLM工业级落地实践人工智能AIAgent多智能体协作知识问答智能问答RAGAI编排流
Agent实战系列:快速自定义Agent在业务线落地:从入门到高级[实现tool串联、多轮对话、多Agent动态编排、静态编排等]本系列涵盖了多个关键功能的实现,包括tool串联、多轮对话、多Agent动态编排以及静态编排等。通过这些功能的学习与实践,用户将能够构建出功能丰富、灵活多变的Agent系统。tool串联让Agent能够调用多种工具和服务,多轮对话则让Agent能够与用户进行更加自然和深
- DigitalOcean Kubernetes现已支持VPC natvie集群
DO_Community
kubernetes
DigitalOceanKubernetes(DOKS)的VPCnatvie集群功能现已正式上线!这一新功能实现了DOKS集群与虚拟私有云(VPC)资源之间的无缝集成,提升了工作负载的网络灵活性和可扩展性。什么是VPCnatvie集群?VPCnatvie集群支持Kubernetes集群与VPC资源之间进行原生路由。这意味着你的DOKS集群可以作为现有VPC网络架构的自然扩展,提供更流畅的连接和更好
- Rasa的工作流程
不会编程的程序猿ᅟ
rasa
Rasa的工作流程分为两个主要部分:NLU(自然语言理解)和Core(对话管理)。整个流程包括从用户输入到最终响应的多个步骤,下面是详细的工作流程解析:1.用户输入用户通过聊天界面(如微信、Telegram、Slack或Web前端)发送自然语言消息,例如:"我想预订一张明天去北京的火车票"2.自然语言理解(NLU)Rasa的NLU模块解析用户输入,提取意图和实体。2.1意图识别NLU模块会识别用户
- 国内的AI大模型有可能超过ChatGPT吗?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能深度学习AI写作AIGC
这是一个非常有前瞻性和现实意义的问题。要回答国内AI是否有可能超过ChatGPT,我们需要从多个方面来分析,包括技术基础、数据资源、应用场景、政策支持以及人才储备等。以下是对这一问题的详细探讨:1.技术基础(1)现状国内AI技术:国内的AI技术发展迅速,尤其在深度学习、自然语言处理(NLP)和计算机视觉等领域已经取得了显著进展。例如,百度的文心一言、阿里的通义千问等大语言模型(LLM)已经在技术上
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- 再分享API形式调用Dify项目应用
福安德信息科技
大模型python人工智能大模型llmdify
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模型应用开发最简明的Few-shotPrompt指南SemanticKernel:微软大模型开发框架——LangChain替代对话大模型Prompt是否需要
- 基于深度学习的鸟类识别系统详解(UI界面 + YOLOv10 + 数据集)
2025年数学建模美赛
深度学习uiYOLO人工智能python计算机视觉
引言鸟类识别是计算机视觉领域中一个独具挑战性的任务,尤其是在复杂的自然环境中,识别不同种类的鸟类需要非常强大的模型和丰富的数据集。随着深度学习技术的发展,基于YOLO(YouOnlyLookOnce)系列模型的目标检测系统展现了卓越的性能,特别是在速度和精度上的平衡方面。本博客将详细讲解如何利用YOLOv10模型来构建一个基于深度学习的鸟类识别系统。该系统会结合自定义鸟类数据集,设计一个简洁直观的
- Java 大视界 -- Java 大数据中的自然语言生成技术与实践(63)
青云交
大数据新视界Java大视界大数据自然语言生成基于规则模型基于统计模型基于深度学习模型新闻写作智能客服
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 你知道吗?其实这些都是AI——智能聊天机器人
贫苦游商
人工智能机器人机器学习AIGC制造
智能聊天机器人AI:优化用户体验的智能助手在现代的数字化生活中,智能聊天机器人已经成为许多中国社交平台上不可或缺的一部分。这些机器人通过人工智能技术的支持,为用户提供各种互动服务,从回答常见问题到提供个性化建议,极大地提升了用户体验和平台的服务质量。智能聊天机器人AI的核心在于其强大的自然语言处理能力。通过分析用户的输入文本,这些系统能够理解用户的意图,并生成相应的回复。例如,当用户在购物平台上询
- Transformer大模型实战 BART模型的架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战BART模型的架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming/TextGenWebUILLMTransformer大模型实战BART模型的架构1.背景介绍1.1问题的由来随着大规模预训练模型的兴起,如BERT、GPT系列等,研究人员发现基于Transformer架构的模型在自然语言处理任务上表现出了显著的优势。为
- 【Unity 天空和昼夜循环系统插件】Procedural Sky Shader & Day Night Cycle - Jupiter 旨在为游戏项目提供动态、真实的天际效果和昼夜变化
Unity游戏资源学习屋
Unity插件
ProceduralSkyShader&DayNightCycle-Jupiter是一款专为Unity开发的程序化天空和昼夜循环系统插件,旨在为游戏项目提供动态、真实的天际效果和昼夜变化。该插件使用程序生成的方式实时模拟天空的变化,提供了多种自定义选项,帮助开发者创建美丽且自然的环境光照和大气效果,适用于各种游戏类型,包括开放世界、冒险、角色扮演等。核心功能程序化天空生成插件采用程序生成方法,能够
- 从文字到思维:呆马GPT在人工智能领域的创新之旅
呆码科技
gpt人工智能
引言生成式预训练变换器(GenerativePre-trainedTransformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大规模数据集上进行预训练,学习语言的统计规律和世界知识,然后在特定任务上进行微调,以适应不同的应用需求。GPT领域的发展推动了自然语言处理(NLP)技术
- BERT模型在情感分析中的应用:探寻文本情感的智能之路
Echo_Wish
前沿技术人工智能bert人工智能深度学习
随着互联网的普及和社交媒体的兴起,情感分析(SentimentAnalysis)已成为自然语言处理(NLP)领域的重要研究方向。情感分析通过对文本数据的分析,识别其中所表达的情感倾向(如正面、负面或中性)。近年来,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型凭借其强大的上下文理解能力,在情感分析中展现出了卓越的性能。本文将深
- FPGA在空间领域应用的权衡之道
forgeda
EDA硬件辅助验证fpga开发硬件架构嵌入式硬件EDA硬件辅助验证故障注入测试SEUEmulation商业航天
新官上任,干货较多。去年10月30日,紫光国微在投资者关系活动中表示,对FPGA产品的国产化率以及未来价格压力趋势的答复是,除了个别品类外,FPGA领域已基本完成国产化替代。价格竞争激烈,现有存量市场需求不足,导致产品价格成为重要竞争手段等。价格是市场新进入者的唯一机会,FPGA行业自然也不例外。当下火热的“智算概念”,如果说GPU在数据中心堆算力的方式有多风光,那么在追求性能之外,必须权衡SWa
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地