- Redis 哨兵模式的选举算法是什么?
少林码僧
redissentinel
Redis哨兵模式中的选举算法主要用于在主节点出现故障时,从多个Sentinel节点中选出一个领导者(Leader)来执行故障转移操作。Redis哨兵的选举算法基于Raft算法的简化版本,但不完全等同于标准的Raft算法。以下是其主要过程:一、发现主节点故障当一个Sentinel节点主观地认为主节点不可达时(通常是在一定时间内没有收到主节点的PING回复),它会将主节点标记为主观下线(Subjec
- 从零到一:Redis Cluster部署配置全流程详解,轻松搞定高可用分布式缓存!
IT成长日记
#数据库技术解析与应用实践RedisClusterredis缓存集群
RedisCluster是Redis官方提供的分布式解决方案,它通过数据分片(Sharding)和主从复制(Replication)来实现高可用性和横向扩展。RedisCluster能够在多个节点之间自动分配数据,并且在节点故障时自动进行故障转移,确保系统的高可用性。本文将详细介绍RedisCluster的部署和配置全流程,帮助读者快速搭建一个高可用的Redis集群。1RedisCluster概述
- DeepSeek-R1核心技术深度解密:动态专家网络与多维注意力融合的智能架构实现全解析
Coderabo
DeepSeekR1模型企业级应用架构DeepSeek-R1
DeepSeek-R1智能架构核心技术揭秘:从动态路由到分布式训练的完整实现指南一、DeepSeek-R1架构设计原理1.1动态专家混合系统DeepSeek-R1采用改进型MoE(MixtureofExperts)架构,核心公式表达为:y=∑i=1nG(x
- DeepSeek-R1大模型微调技术深度解析:架构、方法与应用全解析
大势下的牛马
搭建本地gpt架构deepseek微调
1.DeepSeek-R1大模型架构设计与技术特性1.1架构设计DeepSeek-R1作为超大规模语言模型,其核心架构设计包含以下创新:专家混合架构(MoE)采用6710亿参数的混合专家架构(MoE),每个推理过程仅激活370亿参数,实现计算效率与资源利用率的突破性提升。Transformer框架增强基于改进型Transformer架构,结合多头注意力机制(MLA)与动态权重分配技术,优化了长程依
- Redis Sentinel(哨兵模式)高可用性解决方案
π大星星️
redissentinelgit
一、概述RedisSentinel(哨兵模式)是Redis的高可用性(HighAvailability,HA)解决方案,它通过哨兵系统和Redis实例的协同工作,确保了Redis服务的高可用性和数据的持久性。哨兵系统由一个或多个哨兵进程组成,这些进程负责监控主从Redis服务器,并在主服务器出现故障时进行自动故障转移。二、主要功能监控哨兵系统会持续监控所有主从Redis服务器,以及哨兵系统自身的状
- 【深度学习】DeepSeek模型介绍与部署
Nerous_
深度学习深度学习人工智能
原文链接:DeepSeek-V31.介绍DeepSeek-V3,一个强大的混合专家(MoE)语言模型,拥有671B总参数,其中每个token激活37B参数。为了实现高效推理和成本效益的训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3首次提出了无辅助损失的负载平衡策略,并设置了多to
- 【nnUnetv2】Code复现
是Winky啊
#项目nnUnet人工智能深度学习
作者提出一种nnUNet(no-new-Net)框架,基于原始的UNet(很小的修改),不去采用哪些新的结构,如相残差连接、dense连接、注意力机制等花里胡哨的东西。相反的,把重心放在:预处理(resampling和normalization)、训练(loss,optimizer设置、数据增广)、推理(patch-based策略、test-time-augmentations集成和模型集成等)、
- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- [模拟实现]unique_ptr、shared_ptr智能指针--C++版本的代码实现
北顾南栀倾寒
c++开发语言
一、unique_ptrunique_ptr是在auto_ptr的基础之上,解决了多个智能指针同时指向一个对象,发生管理权转移,只有一个智能指针指向了对象,其他的都是管理的空对象的行为。这里的多个智能指针指向同一个对象是通过拷贝构造或者赋值重载实现的,unique_ptr的解决办法就是将这两种方式禁用掉,不让其进行这类操作,保证了同一时间只有一个智能指针指向该对象。1.构造函数与析构函数std::
- 13 异常处理的使用大全
希望_睿智
C++基础知识精讲c++windowsc语言开发语言异常处理
概述异常是指程序在执行的过程中,没有按照预定的流程和逻辑去运行,从而导致数组越界、内存溢出、甚至程序崩溃等各种非正常的情况。在C++、Java和C#等高级语言中,都提供了对于异常的处理机制。异常处理,实际上是一种转移程序控制权的方式。当程序中抛出了异常时,我们可以捕获异常,进而进行相应的处理。处理模型一般有两种:一种是终止模型,表示该异常是致命的,无法恢复,会直接终止程序;另一种是恢复模型,表示该
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- Redis 三主三从集群部署的完整方案
Honmaple
redis数据库缓存
一、架构设计原理分布式数据分片哈希槽机制:RedisCluster将数据划分为16384个槽位,每个主节点负责部分槽位(如主节点1管理槽0-5460,主节点2管理5461-10922等)。自动负载均衡:数据按哈希值分配到不同节点,避免单点性能瓶颈。高可用基础:每个主节点配置至少一个从节点,主节点故障时自动切换从节点接替。故障转移流程哨兵协同:3个哨兵节点通过投票机制(quorum=2)决
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- 汇编常用指令速查
爱吃饼干的熊猫
汇编使用总结汇编dosnullbasiccommand测试
一、汇编速查MOVAA,BB将BB放到AA里CALL调用子程序(相当于BASIC的GOSUB)RET与RETF返回程序(相当于BASIC的RETURN)CMPXX,YY比较XX与YYJZ若相等则转移JNZ若不相等则转移JB若小于则转移JG若大于则转移JMP无条件转移J???(各种转移指令)LOOP循环直到CX为0INTXX类似CALL的中断涵数PUSH推入栈(STACK)ESP:PUSHAXPOP
- SELECT 选择框上下移动 左右移动
windy
php程序小知识库borderbuttoninput存储listfunction
1,功能说明:实现两个list之间的数据转换,单个select的上下移动,删除。(支持多选操作)2,函数简介上移:moveUp(oSelect,isToTop)下移:moveDown(oSelect,isToTop)选中转移:moveSelected(oSourceSel,oTargetSel)全部转移:moveAll(oSourceSel,oTargetSel)删除选中:deleteSelect
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- Multi-view graph convolutional networks with attention mechanism
小源er
图论和图神经网络机器学习机器学习深度学习人工智能
摘要传统的图卷积网络关注于如何高效的探索不同阶跳数(hops)的邻居节点的信息。但是目前的基于GCN的图网络模型都是构建在固定邻接矩阵上的即实际图的一个拓扑视角。当数据包含噪声或者图不完备时,这种方式会限制模型的表达能力。由于数据的测量或者收集会不可避免的会出现错误,因此基于固定结构的图模型表达能力是不充分的。本文提出了基于注意力机制的多视图图卷积网络,将拓扑结构的多个视图和基于注意力的特征聚合策
- 一文读懂std::move()
SJTU 路子
c++
左值和右值左值和右值的根本区别在于是否允许取地址&运算符获得对应的内存地址变量可以取地址,所以左值;但是常量和临时对象等不可以取地址,所以是右值左值是表达式结束后依然存在的持久对象(代表一个在内存中占有确定位置的对象)右值是表达式结束时不在存在的临时对象(不在内存中占有确定位置的表达式)左值引用和右值引用左值引用的声明符号为&,右值引用的声明符号为&&右值引用是用来支持转移语义的右值引用,用以引用
- Java面试八股之Redis集群Cluster
天哥不爱学习
Java面试八股文java面试redis
Redis集群ClusterRedisCluster是一种基于数据分片(Sharding)的分布式缓存和存储系统,它实现了数据的水平扩展、高可用性和自动故障转移。以下是对RedisCluster模式详细实现流程的描述:1.初始化与配置部署节点:在不同的服务器上部署多个Redis节点,每个节点既可以作为主节点也可以作为从节点。配置集群模式:为每个节点启用Cluster模式,指定Cluster所需的端
- 蓝桥杯每日一练
智商不在服务器
蓝桥杯算法
【问题描述】小蓝制作了n个工件,每个工件用一个由小写英文字母组成的,长度为2的字符串表示,第i个工件表示为si。小蓝想把n个工件拼接到一起,方便转移到另一个地方完成下一道工序,而拼接后的工件用字符串S=s1+s2+...+sn表示,其中+表示一种奇特的拼接方式:对于c=a+b来说,如果a的第二个字符和b的第一个字符相同,则拼接后的结果c长度为3而不是4,中间相同的字符可以省略一个,比如xy+yz=
- 注意力机制:让AI拥有“黄金七秒记忆“的魔法----(点积注意力)
y江江江江
机器学习大模型人工智能深度学习
注意力机制:让AI拥有"黄金七秒记忆"的魔法–(点积注意力)注意⼒机制对于初学者来说有点难理解,我们⼀点⼀点地讲。现在先暂时忘记编码器、解码器、隐藏层和序列到序列这些概念。想象我们有两个张量x1和x2,我们希望⽤注意⼒机制把它俩给衔接起来,让x1看⼀看,x2有哪些特别值得关注的地⽅。具体来说,要得到x1对x2的点积注意⼒,我们可以按照以下步骤进⾏操作。(1)创建两个形状分别为(batch_size
- LORA的魔法棒:在Stable Diffusion中挥洒注意力机制的优化咒语 ??
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
LORA的魔法棒:在StableDiffusion中挥洒注意力机制的优化咒语??欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:DTcode7的博客首页。一个做过前端开发的产品经理,经历过睿智产品的折磨导致脱发之后,励志要翻身农奴把歌唱,一边打入敌人内部一边持续提升自己,为我们广大开发同胞
- 专门为高速连续扫描设计的TDI工业相机
51camera
工业相机线阵工业相机TDI工业相机
TDI(TimeDelayIntegration,时间延迟积分)工业相机是一种基于特殊CCD(电荷耦合器件)技术的成像设备,主要用于高速、高灵敏度、高分辨率的图像采集场景。其核心原理是通过多级积分和同步电荷转移技术,在物体连续运动时逐行扫描并累积信号,显著提升图像质量和信噪比(SNR)。它是一种特殊的线阵工业相机。核心原理1.多级积分:TDI相机通过多行感光单元(如多级CCD)对同一运动目标进行多
- KV 缓存简介
dev.null
AI缓存
以下是关于KV缓存(Key-ValueCache)的简介,涵盖其定义、原理、作用及优化意义:1.什么是KV缓存?KV缓存是Transformer架构(如GPT、LLaMA等大模型)在自回归生成任务(如文本生成)中,用于加速推理过程的核心技术。其本质是:在生成序列时,缓存历史token的Key和Value矩阵,避免重复计算,从而显著减少计算量。2.为什么需要KV缓存?传统自注意力计算的问题在生成第t
- 【论文精读】PatchTST-基于分块及通道独立机制的Transformer模型
打酱油的葫芦娃
时序预测算法时序预测PatchTSTTransformer预训练微调表征学习
《ATIMESERIESISWORTH64WORDS:LONG-TERMFORECASTINGWITHTRANSFORMERS》的作者团队来自PrincetonUniversity和IBMResearch,发表在ICLR2023会议上。动机Transformer模型因其自注意力机制在处理序列数据方面的优势,在自然语言处理(NLP)、计算机视觉(CV)、语音等多个领域取得了巨大成功。这种机制使得模型
- Transformer精选问答
EmbodiedTech
大模型人工智能transformer深度学习人工智能
Transformer精选问答1Transformer各自模块作用Encoder模块经典的Transformer架构中的Encoder模块包含6个EncoderBlock.每个EncoderBlock包含两个子模块,分别是多头自注意力层,和前馈全连接层.多头自注意力层采用的是一种ScaledDot-ProductAttention的计算方式,实验结果表明,Multi-head可以在更细致的层面上提
- 医疗影像联邦学习可解释性算法研究
智能计算研究中心
其他
内容概要医疗影像分析领域的联邦学习技术正面临数据隐私保护与模型可解释性的双重挑战。本研究以跨机构医疗影像协作场景为核心,系统性探讨联邦学习框架下可解释性算法的创新路径,重点解决医疗AI模型在分布式训练中的透明度缺失问题。通过引入动态特征选择机制与可解释性注意力模块,算法在保持数据本地化处理的同时,实现了关键病灶特征的跨域关联与可视化解析。研究同步整合自动化数据增强流程与多维度评估指标(如F1值、召
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http