- 国家超算平台上线DeepSeek - R1系列模型:开启AI新征程
CodeJourney.
数据库人工智能算法人工智能
2025年初,科技圈发生了一件大事:国家超算平台上线了DeepSeek-R1系列模型。这事儿就像在科技池塘里扔了颗大石头,激起了好大的水花,对人工智能(AI)领域影响深远。一、DeepSeek-R1系列模型究竟啥来头DeepSeek-R1系列模型是DeepSeek这家公司研发的。它用了强化学习训练,推理的时候会反复思考验证,思维链能有好几万字长。在数学、代码编写和复杂逻辑推理这些方面,表现相当厉害
- (Aliyun AI ACP 04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述
North_D
人工智能基础知识点人工智能深度学习学习自然语言处理迁移学习python神经网络
文章目录阿里云人工智能工程师ACP认证考试知识点辅助阅读(AliyunAIACP04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述I.深度学习算法1️⃣前馈神经网络(FFNs)详解2️⃣卷积神经网络(CNNs)探秘II.增强学习探索3️⃣增强学习基础与决策过程4️⃣常见增强学习算法剖析III.迁移学习实践5️⃣迁移学习基本原理与应用阿里云人工智能工程师ACP认证考试知识点辅
- 揭秘AI的智能双翼:决策式AI与生成式AI
小马不会过河
人工智能算法embeddingmicrosoft知识图谱
在人在数字化浪潮的推动下,人工智能已成为推动社会进步的关键技术之一。特别是在决策式AI与生成式AI这两个领域,它们的发展不仅加速了技术创新的步伐,也在实际应用中展现出巨大的潜力和价值。01.智能双翼:决策式AI与生成式AI决策式AI(DiscriminativeAI)定义:决策式AI,也称为判别式AI,是一种通过学习数据中的条件概率分布,对新场景进行判断、分析和预测的人工智能技术。它的设计目标是模
- 探秘 GitCode 上的开源项目:91pron - AI 引擎驱动的智能视频处理工具
毕艾琳
探秘GitCode上的开源项目:91pron-AI引擎驱动的智能视频处理工具去发现同类优质开源项目:https://gitcode.com/项目简介在平台上,有一个名为的开源项目,它是一个利用人工智能技术进行智能视频处理的应用。虽然项目的名称可能有些隐晦,但其核心功能却极具实用价值,特别是对于那些需要自动化处理大量视频数据的工作。技术分析1.AI模型应用91pron使用了深度学习模型,尤其是计算机
- 大模型技术对大数据生态链的全面革新
敏叔V587
大数据
大模型技术对大数据生态链的全面革新在数字化浪潮汹涌澎湃的当下,大数据和人工智能技术已成为推动各行业发展的关键力量。其中,大模型技术的崛起,正深刻地改变着大数据生态链的格局,为数据的处理、分析与应用带来了前所未有的变革。今天,就让我们一同深入探讨大模型技术对大数据生态链的多维度影响,并结合实际案例展开分析。一、大模型技术:重塑数据采集与整合(一)智能采集优化传统的数据采集往往依赖于预设规则和人工干预
- 深入详解人工智能机器学习算法——逻辑回归算法
猿享天开
人工智能基础知识学习人工智能机器学习算法逻辑回归
引言逻辑回归(LogisticRegression)是机器学习中一种基本而重要的分类算法。在这篇文章中,我们将深入解析逻辑回归的各个方面,包括其基础知识、数学原理、实现方法、以及应用场景。我们还将通过具体的代码示例和应用案例,帮助您全面理解逻辑回归算法。第一部分:逻辑回归的基础知识1.1什么是逻辑回归?逻辑回归是一种用于解决二分类问题的回归分析方法。尽管名字中带有“回归”,逻辑回归的目标是将预测结
- 人工智能-数据分析及特征提取思路
power-辰南
人工智能人工智能特征提取大模型机器学习
1、概况基于学生行为数据预测是否涉黄、涉黑等。2.数据分析数据分析的意义包括得到数据得直觉、发掘潜在的结构、提取重要的变量、删除异常值、检验潜在的假设和建立初步的模型。2.1数据质量分析2.1.1数据值分析查看数据类型:首先明确各字段的数据类型,例如学生标识通常为字符串类型(如学号),访问时间一般是日期时间类型,访问网址、搜索关键词等为文本类型,停留时长、访问频次等则是数值类型,而是否涉黄涉黑标签
- DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索
kaichu2
论文翻译DeepSeek
DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索在人工智能领域,大型语言模型(LLMs)的发展日新月异,其在自然语言处理和生成任务中的表现逐渐接近人类水平。然而,如何进一步提升这些模型的推理能力,使其能够更好地处理复杂的逻辑、数学和科学问题,一直是研究的热点。最近,DeepSeek-AI团队发布的DeepSeek-R1模型为这一领域带来了新的突破。本文将详细介绍DeepSeek-
- AI助力精准农业:从数据到行动的智能革命
Echo_Wish
人工智能前沿技术人工智能
AI助力精准农业:从数据到行动的智能革命农业,作为人类最古老的产业,正经历着一场前所未有的智能化变革。从传统的经验种植到现代化机械农业,再到今天的人工智能(AI)精准农业,科技的每一次跃迁都在提高农业生产效率,降低资源浪费,并增强粮食安全。AI之所以能在农业中大显身手,主要依赖于数据驱动的智能决策。通过卫星遥感、无人机、传感器、气象数据等多维度信息,AI可以帮助农民精准施肥、智能灌溉、预测病虫害,
- 智能工厂能耗管理:Python助力节能增效
Echo_Wish
Python进阶python开发语言
智能工厂能耗管理:Python助力节能增效在工业4.0时代,工厂能耗管理已成为制造企业降本增效的重要一环。传统的能耗管理方式往往依赖人工统计和经验决策,导致能源浪费严重。而借助人工智能与Python的强大能力,我们可以实现智能化、数据驱动的能耗优化方案。今天,我们就来聊聊如何利用Python构建智能工厂能耗管理系统,从数据采集、分析到优化,全面提升能源使用效率。1.为什么要智能化工厂能耗管理?1.
- 五子棋ai启发式搜索_一种快速而简单的人工智能启发式学习语言的方法
weixin_26630173
python人工智能java机器学习算法
五子棋ai启发式搜索介绍(Introduction)ThespecialthingIfoundwhenIfirststarteddivingintothefieldofArtificialIntelligencewastheinfiniteamountofparallelsbetweenhowneuralnetworkslearnandmysubjectiveexperienceofmyownin
- 大语言模型轻量化:知识蒸馏的范式迁移与工程实践
LucianaiB
语言模型人工智能自然语言处理python
大语言模型轻量化:知识蒸馏的范式迁移与工程实践嗨,我是LucianaiB!总有人间一两风,填我十万八千梦。路漫漫其修远兮,吾将上下而求索。摘要在大型语言模型(LLM)主导人工智能发展的当下,模型参数量与推理成本的指数级增长已成为制约技术落地的核心瓶颈。本文提出基于动态知识蒸馏的轻量化范式,通过引入注意力迁移机制与分层蒸馏策略,在保持模型语义理解能力的同时实现参数效率的显著提升。实验表明,该方法在G
- 智能运维分析决策系统:赋能数字化转型的新引擎
我的运维人生
运维运维开发技术共享
智能运维分析决策系统:赋能数字化转型的新引擎在数字化转型的浪潮中,企业对于高效、智能的运维管理需求日益迫切。传统的运维模式往往依赖于人工经验,难以应对大规模、复杂多变的IT环境。智能运维分析决策系统(AIOps,ArtificialIntelligenceforITOperations)应运而生,它利用大数据、机器学习、人工智能等技术,实现了运维的自动化、智能化,极大地提升了运维效率与质量,为企业
- AIGC从入门到实战:基于大模型的人工智能应用的涌现和爆发
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的新纪元:AIGC的崛起近年来,人工智能(AI)领域经历了前所未有的发展,其中AIGC(AIGeneratedContent,人工智能生成内容)的崛起尤为引人注目。AIGC借助深度学习模型,能够生成逼真的图像、视频、音频、文本等内容,为人类的创造力和生产力带来了革命性的改变。1.2大模型:AIGC的基石AIGC的核心驱动力在于大规模预训练模型(简称“大模型”)。这些模型拥
- 大语言模型应用指南:工作记忆与长短期记忆
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1问题的由来在人工智能的发展过程中,语言模型的研究一直是重要的一环。早期的语言模型,如N-gram,虽然在一定程度上能够捕捉语言的统计规律,但其无法有效处理语言中的长距离依赖性和复杂结构。这主要是因为N-gram模型只能捕捉到词汇之间的局部依赖关系,而无法捕捉到更长范围内的语义信息。1.2研究现状近年来,随着深度学习技术的发展,基于神经网络的语言模型逐渐崭露头角。其中,长短期记忆网
- AI模型调度架构全解析:实现任务与模型的智能匹配
大模型玩家
人工智能架构学习方法产品经理经验分享算法ai
在人工智能技术高速发展的今天,AI大模型的应用范围不断拓宽。从自然语言处理到技术研发、从教育场景到企业服务,AI大模型正在逐步改变我们的工作和生活。然而,随着需求的多样化和任务复杂性的增加,如何高效地调用和管理多个AI大模型,成为了企业和开发者面临的一大挑战。本文将深入剖析基于Ollama的AI大模型问答调度架构,探讨其核心设计、功能亮点,以及在业务场景中的应用优势,帮助您全面了解这一系统如何在复
- DeepSeek:探索未来的人工智能模型与技术
一ge科研小菜鸡
人工智能DeepSeek
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言近年来,大语言模型(LLM)迅速发展,推动了人工智能在多个领域的应用。从OpenAI的GPT系列到Google的Gemini,再到国内的多个自研大模型,全球AI竞赛已进入白热化阶段。在这一背景下,DeepSeekAI作为一个新兴的AI研究机构,凭借其强大的技术实力和创新能力,在大模型领域崭露头角。本文将从DeepSeek的背景、核心技术、
- 什么是 AI 代理?
白马区块Crypto100
SolanaAI套利策略交易人工智能SOL机器人deepseekAI交易
要点AI代理是可自主操作的程序,能够分析信息、从经验中学习,并代表用户执行任务。与普通机器人不同,AI代理不仅具有更强的操作和改进能力,而且几乎不需要人工干预。它们还可以与其他代理和应用程序进行交互。AI代理的应用非常广泛。例如,它们能够通过自动完成交易、管理风险、为NFT增加互动性以及简化区块链操作,推动加密货币领域的发展,使Web3更易于使用。简介人工智能(AI)正在转变我们生活、工作以及使用
- 【专题】DeepSeek技术颠覆or创新共赢,开启Al算法变革元年报告汇总PDF洞察(附原数据表)
数据挖掘深度学习机器学习算法
原文链接:https://tecdat.cn/?p=39544在科技飞速迭代的当下,人工智能领域正经历着深刻变革,AIAgent的发展尤为引人瞩目。随着数字化进程的加速,全球数据量呈指数级增长,如同为AIAgent的发展提供了丰沃土壤。海量数据不仅为模型训练提供了坚实基础,更驱动着AIAgent在各领域的创新应用。与此同时,国产大模型在近期密集涌现,数量已颇具规模且广泛渗透到多个垂直行业,展现出强
- AICon北京站HarmonyOS技术分论坛开启招募,欢迎开发者踊跃报名
harmonyos
在人工智能的浪潮中,HarmonyOS以其独特的技术优势,引领着移动应用开发的新趋势。2024年12月14日,在AICon全球人工智能开发与应用大会(北京站)期间,将举办以“鸿蒙生态下的AI助力移动应用开发新范式”为主题的HarmonyOS技术分论坛。本届分论坛将邀请领先企业伙伴,行业领袖和技术专家,从AI辅助开发到智能编码,从大模型驱动的人机协同提高效率到IDE下的智能研发和知识库建设,共同探讨
- 【人工智能时代】- Windows本地部署Ollama+qwen本地大语言模型Web交互界面并实现公网访问
xiaoli8748_软件开发
人工智能时代人工智能windows语言模型
文章目录前言1.运行Ollama2.安装OpenWebUI2.1在Windows系统安装Docker2.2使用Docker部署OpenWebUI3.安装内网穿透工具4.创建固定公网地址前言本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并安装OpenWebUI结合cpolar内网穿透软件,实现在公网环境也能访问你在本地内网搭建的大语言模型运行环境。近些年来随着Cha
- 51-59 CVPR 2024 | ChatSiM:Editable Scene Simulation for Autonomous Driving via Collaborative LLM
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶AIGCstablediffusion智慧城市计算机视觉
24年3月,上海交通大学、上海人工智能实验室、卡内基梅隆大学和清华大学联合发布EditableSceneSimulationforAutonomousDrivingviaCollaborativeLLM-Agents,基于LLM协作的可编辑自动驾驶场景仿真。ChatSim利用了大型语言模型(LLM)智能体协作框架,采用了一种新颖的多摄像头神经辐射场McNeRF和多摄像头照明估计McLight方法实
- 大语言模型本地化部署+可视化微调
科研小fw
人工智能语言模型人工智能自然语言处理pythonchatgpt
目录本地化部署GLM4Qwen2大模型微调本地化部署2023年被称为人工智能(AI)元年,AI技术在全球范围内飞速发展,已经渗透到了各行各业。随着chatgpt的爆火,国内外的大语言模型(LargeLanguageModel,LLM)争先恐后,高速发展,人工智能技术也从传统的判别式人工智能逐渐转向了生成式人工智能,LLM作为AI的一种具体表现形式,除去关注大模型的回答精度,作为用户来说,会更加关注
- 现代编程的影响
2501_90255623
生活
一、编程对技术创新的推动作用1.1引领前沿科技发展编程是人工智能、大数据、物联网、区块链等前沿科技的核心驱动力。通过编程,研发人员能够快速验证并迭代创新想法,推动这些领域的技术突破。例如,在人工智能领域,编程使得机器学习算法得以实现,从而创造出能够自主学习和适应环境的智能系统。1.2促进开源文化繁荣编程促进了开源文化的发展,使得全球范围内的开发者能够共享代码、知识和经验。开源项目不仅加速了技术创新
- 长上下文大模型会让检索增强生成(RAG)过时吗?
人工智能
长上下文大模型会让检索增强生成(RAG)过时吗?大模型(LLM)的迅速发展对人工智能领域,尤其是自然语言处理(NLP)产生了重大影响。传统上,像检索增强生成(RAG)这样的技术通过允许模型动态访问外部知识源,在提升大语言模型能力方面发挥了重要作用。然而,长上下文大语言模型(能够处理多达100万个令牌的上下文窗口的模型)的出现,引发了一个有趣的问题:长上下文大语言模型会让检索增强生成(RAG)过时吗
- 中文对联/十二生肖/城市景点/旅游计划……年味超浓的数据集汇总
正月初三,年味正浓。新春的喜庆氛围不仅弥漫在大街小巷,也在人工智能领域引发了诸多创新应用。从AI生成春联,到春运交通标志的智能识别,再到生肖文化的深度挖掘,AI工具正赋能传统民俗,让年味更浓!在这阖家团圆,喜庆祥和的日子里,HyperAI超神经为大家整理了8个春节相关的数据集,涵盖对联、十二生肖、民族文化等热门主题,助力开发者在AI赋能春节的道路上大展拳脚!快来领取你的「新春大礼包」吧~点击查看更
- Lua语言的云计算
依瑾雅
包罗万象golang开发语言后端
Lua语言在云计算中的应用引言随着信息技术的不断发展,云计算作为一种新兴的计算模式,已经逐渐改变了我们对计算资源的使用和管理方式。云计算为用户提供了灵活、高效、可扩展的计算服务,促使了大数据、人工智能等技术的发展。在众多编程语言中,Lua作为一门轻量级、高效且易于扩展的脚本语言,逐渐在云计算领域展现出了其独特的优势。本文将探讨Lua语言在云计算中的应用,深入挖掘其在云计算架构、开发和管理中的价值。
- MATLAB机器学习、深度学习
Yolo566Q
机器学习matlabmatlab机器学习深度学习
目录第一章MATLAB图像处理基础第二章BP神经网络及其在图像处理中的应用第三章卷积神经网络及其在图像处理中的应第四章迁移学习算法及其在图像处理中的应用第五章生成式对抗网络(GAN)及其在图像处理中的应用第六章目标检测YOLO模型及其在图像处理中的应用第七章讨论与答疑近年来,随着无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是在计算机
- 机器学习在金融领域的应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习在金融领域的应用1.背景介绍1.1金融行业面临的挑战1.1.1海量数据处理1.1.2实时风险监控1.1.3个性化服务需求1.2机器学习的兴起1.2.1大数据时代的到来1.2.2计算能力的提升1.2.3算法的不断创新2.核心概念与联系2.1机器学习的定义与分类2.1.1有监督学习2.1.2无监督学习2.1.3强化学习2.2机器学习与人工智能、深度学习的关系2.2.1人工智能的发展历程2.2.
- 16种重要编程语言概览
junecauzhang
软件开发语言原创开发语言c语言c++
1、LISP作者:麻省理工学院的人工智能研究先驱约翰·麦卡锡(JohnMcCarthy)发明年代:1958年应用领域:长期以来垄断人工智能领域的应用,。Lisp最初是作为展示程序的实用模型发布的。在20世纪70年代和80年代,Lisp家族成为人工智能领域非常受欢迎的语言。主要特点:LISP是一种通用高级计算机程序语言,LISP作为应用人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =