搭建一个完整的Kubernetes集群

准备工作

  1. 满足安装 Docker 项目所需的要求,比如 64 位的 Linux 操作系统、3.10 及以上的内核版本;
  2. x86 或者 ARM 架构均可;
  3. 机器之间网络互通,这是将来容器之间网络互通的前提;
  4. 有外网访问权限,因为需要拉取镜像;
  5. 能够访问到gcr.io、quay.io这两个 docker registry,因为有小部分镜像需要在这里拉取;
  6. 单机可用资源建议 2 核 CPU、8 GB 内存或以上,再小的话问题也不大,但是能调度的 Pod 数量就比较有限了;
  7. 30 GB 或以上的可用磁盘空间,这主要是留给 Docker 镜像和日志文件用的。

准备的机器配置如下

  1. 2 核 CPU、 7.5 GB 内存;
  2. 30 GB 磁盘;
  3. Ubuntu 16.04;
  4. 内网互通;
  5. 外网访问权限不受限制。

实践目标

  1. 在所有节点上安装 Docker 和 kubeadm;
  2. 部署 Kubernetes Master;
  3. 部署容器网络插件;
  4. 部署 Kubernetes Worker;
  5. 部署 Dashboard 可视化插件;
  6. 部署容器存储插件。

安装kubeadm和Docker

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
$ cat <<EOF > /etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
$ apt-get update
$ apt-get install -y docker.io kubeadm

部署Kubernetes的Master节点

编写了一个给 kubeadm 用的 YAML 文件(名叫:kubeadm.yaml):

apiVersion: kubeadm.k8s.io/v1alpha1
kind: MasterConfiguration
controllerManagerExtraArgs:
  horizontal-pod-autoscaler-use-rest-clients: "true"
  horizontal-pod-autoscaler-sync-period: "10s"
  node-monitor-grace-period: "10s"
apiServerExtraArgs:
  runtime-config: "api/all=true"
kubernetesVersion: "stable-1.11"

这个配置中, kube-controller-manager 设置了:

horizontal-pod-autoscaler-use-rest-clients: "true"

这意味着,将来部署的 kube-controller-manager 能够使用自定义资源(Custom Metrics)进行自动水平扩展。
其中,“stable-1.11”就是 kubeadm 帮我们部署的 Kubernetes 版本号,即:Kubernetes release 1.11 最新的稳定版,在此环境下,它是 v1.11.1。你也可以直接指定这个版本,比如:kubernetesVersion: “v1.11.1”。
然后,我们只需要执行一句指令:

$ kubeadm init --config kubeadm.yaml

就可以完成 Kubernetes Master 的部署了,这个过程只需要几分钟。部署完成后,kubeadm 会生成一行指令:

kubeadm join 10.168.0.2:6443 --token 00bwbx.uvnaa2ewjflwu1ry --discovery-token-ca-cert-hash sha256:00eb62a2a6020f94132e3fe1ab721349bbcd3e9b94da9654cfe15f2985ebd711

这个 kubeadm join 命令,就是用来给这个 Master 节点添加更多工作节点(Worker)的命令。我们在后面部署 Worker 节点的时候马上会用到它,所以找一个地方把这条命令记录下来。
此外,kubeadm 还会提示我们第一次使用 Kubernetes 集群所需要的配置命令:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

需要这些配置命令的原因是:Kubernetes 集群默认需要加密方式访问。所以,这几条命令,就是将刚刚部署生成的 Kubernetes 集群的安全配置文件,保存到当前用户的.kube 目录下,kubectl 默认会使用这个目录下的授权信息访问 Kubernetes 集群。 如果不这么做的话,我们每次都需要通过 export KUBECONFIG 环境变量告诉 kubectl 这个安全配置文件的位置。 现在,我们就可以使用 kubectl get 命令来查看当前唯一一个节点的状态了:

$ kubectl get nodes

NAME      STATUS     ROLES     AGE       VERSION
master    NotReady   master    1d        v1.11.1

可以看到,这个 get 指令输出的结果里,Master 节点的状态是 NotReady,这是为什么呢? 在调试 Kubernetes 集群时,最重要的手段就是用 kubectl describe 来查看这个节点(Node)对象的详细信息、状态和事件(Event),我们来试一下:

$ kubectl describe node master

...
Conditions:
...

Ready   False ... KubeletNotReady  runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:docker: network plugin is not ready: cni config uninitialized

通过 kubectl describe 指令的输出,我们可以看到 NodeNotReady 的原因在于,我们尚未部署任何网络插件。 另外,我们还可以通过 kubectl 检查这个节点上各个系统 Pod 的状态,其中,kube-system 是 Kubernetes 项目预留的系统 Pod 的工作空间(Namepsace,注意它并不是 Linux Namespace,它只是 Kubernetes 划分不同工作空间的单位):

$ kubectl get pods -n kube-system

NAME               READY   STATUS   RESTARTS  AGE
coredns-78fcdf6894-j9s52     0/1    Pending  0     1h
coredns-78fcdf6894-jm4wf     0/1    Pending  0     1h
etcd-master           1/1    Running  0     2s
kube-apiserver-master      1/1    Running  0     1s
kube-controller-manager-master  0/1    Pending  0     1s
kube-proxy-xbd47         1/1    NodeLost  0     1h
kube-scheduler-master      1/1    Running  0     1s

可以看到,CoreDNS、kube-controller-manager 等依赖于网络的 Pod 都处于 Pending 状态,即调度失败。这当然是符合预期的:因为这个 Master 节点的网络尚未就绪。

部署网络插件

在 Kubernetes 项目“一切皆容器”的设计理念指导下,部署网络插件非常简单,只需要执行一句 kubectl apply 指令,以 Weave 为例:

$ kubectl apply -f https://git.io/weave-kube-1.6

部署完成后,我们可以通过 kubectl get 重新检查 Pod 的状态:

$ kubectl get pods -n kube-system

NAME                             READY     STATUS    RESTARTS   AGE
coredns-78fcdf6894-j9s52         1/1       Running   0          1d
coredns-78fcdf6894-jm4wf         1/1       Running   0          1d
etcd-master                      1/1       Running   0          9s
kube-apiserver-master            1/1       Running   0          9s
kube-controller-manager-master   1/1       Running   0          9s
kube-proxy-xbd47                 1/1       Running   0          1d
kube-scheduler-master            1/1       Running   0          9s
weave-net-cmk27                  2/2       Running   0          19s

可以看到,所有的系统 Pod 都成功启动了,而刚刚部署的 Weave 网络插件则在 kube-system 下面新建了一个名叫 weave-net-cmk27 的 Pod,一般来说,这些 Pod 就是容器网络插件在每个节点上的控制组件。 Kubernetes 支持容器网络插件,使用的是一个名叫 CNI 的通用接口,它也是当前容器网络的事实标准,市面上的所有容器网络开源项目都可以通过 CNI 接入 Kubernetes,比如 Flannel、Calico、Canal、Romana 等等,它们的部署方式也都是类似的“一键部署”。关于这些开源项目的实现细节和差异,我会在后续的网络部分详细介绍。 至此,Kubernetes 的 Master 节点就部署完成了。如果你只需要一个单节点的 Kubernetes,现在你就可以使用了。不过,在默认情况下,Kubernetes 的 Master 节点是不能运行用户 Pod 的,所以还需要额外做一个小操作。在本篇的最后部分,我会介绍到它。

部署 Kubernetes 的 Worker 节点

Kubernetes 的 Worker 节点跟 Master 节点几乎是相同的,它们运行着的都是一个 kubelet 组件。唯一的区别在于,在 kubeadm init 的过程中,kubelet 启动后,Master 节点上还会自动运行 kube-apiserver、kube-scheduler、kube-controller-manger 这三个系统 Pod。
所以,相比之下,部署 Worker 节点反而是最简单的,只需要两步即可完成。
第一步,在所有 Worker 节点上执行“安装 kubeadm 和 Docker”一节的所有步骤。
第二步,执行部署 Master 节点时生成的 kubeadm join 指令:

$ kubeadm join 10.168.0.2:6443 --token 00bwbx.uvnaa2ewjflwu1ry --discovery-token-ca-cert-hash sha256:00eb62a2a6020f94132e3fe1ab721349bbcd3e9b94da9654cfe15f2985ebd711

通过 Taint/Toleration 调整 Master 执行 Pod 的策略

默认情况下 Master 节点是不允许运行用户 Pod 的。而 Kubernetes 做到这一点,依靠的是 Kubernetes 的 Taint/Toleration 机制。
它的原理非常简单:一旦某个节点被加上了一个 Taint,即被“打上了污点”,那么所有 Pod 就都不能在这个节点上运行,因为 Kubernetes 的 Pod 都有“洁癖”。
除非,有个别的 Pod 声明自己能“容忍”这个“污点”,即声明了 Toleration,它才可以在这个节点上运行。
其中,为节点打上“污点”(Taint)的命令是:

$ kubectl taint nodes node1 foo=bar:NoSchedule

这时,该 node1 节点上就会增加一个键值对格式的 Taint,即:foo=bar:NoSchedule。其中值里面的 NoSchedule,意味着这个 Taint 只会在调度新 Pod 时产生作用,而不会影响已经在 node1 上运行的 Pod,哪怕它们没有 Toleration。
那么 Pod 又如何声明 Toleration 呢?
我们只要在 Pod 的.yaml 文件中的 spec 部分,加入 tolerations 字段即可:

apiVersion: v1
kind: Pod
...
spec:
  tolerations:
  - key: "foo"
    operator: "Equal"
    value: "bar"
    effect: "NoSchedule"

这个 Toleration 的含义是,这个 Pod 能“容忍”所有键值对为 foo=bar 的 Taint( operator: “Equal”,“等于”操作)。 现在回到我们已经搭建的集群上来。这时,如果你通过 kubectl describe 检查一下 Master 节点的 Taint 字段,就会有所发现了:

$ kubectl describe node master

Name:               master
Roles:              master
Taints:             node-role.kubernetes.io/master:NoSchedule

可以看到,Master 节点默认被加上了node-role.kubernetes.io/master:NoSchedule这样一个“污点”,其中“键”是node-role.kubernetes.io/master,而没有提供“值”。 此时,你就需要像下面这样用“Exists”操作符(operator: “Exists”,“存在”即可)来说明,该 Pod 能够容忍所有以 foo 为键的 Taint,才能让这个 Pod 运行在该 Master 节点上:

apiVersion: v1
kind: Pod
...
spec:
  tolerations:
  - key: "foo"
    operator: "Exists"
    effect: "NoSchedule"

当然,如果你就是想要一个单节点的 Kubernetes,删除这个 Taint 才是正确的选择:

$ kubectl taint nodes --all node-role.kubernetes.io/master-

如上所示,我们在“node-role.kubernetes.io/master”这个键后面加上了一个短横线“-”,这个格式就意味着移除所有以“node-role.kubernetes.io/master”为键的 Taint。 到了这一步,一个基本完整的 Kubernetes 集群就部署完毕了。是不是很简单呢? 有了 kubeadm 这样的原生管理工具,Kubernetes 的部署已经被大大简化。更重要的是,像证书、授权、各个组件的配置等部署中最麻烦的操作,kubeadm 都已经帮你完成了。 接下来,我们再在这个 Kubernetes 集群上安装一些其他的辅助插件,比如 Dashboard 和存储插件。

部署 Dashboard 可视化插件

在 Kubernetes 社区中,有一个很受欢迎的 Dashboard 项目,它可以给用户提供一个可视化的 Web 界面来查看当前集群的各种信息。毫不意外,它的部署也相当简单:

$ kubectl apply -f 
$ $ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-rc6/aio/deploy/recommended.yaml

部署完成之后,我们就可以查看 Dashboard 对应的 Pod 的状态了:

$ kubectl get pods -n kube-system
kubernetes-dashboard-6948bdb78-f67xk   1/1       Running   0          1m

需要注意的是,由于 Dashboard 是一个 Web Server,很多人经常会在自己的公有云上无意地暴露 Dashboard 的端口,从而造成安全隐患。所以,1.7 版本之后的 Dashboard 项目部署完成后,默认只能通过 Proxy 的方式在本地访问。

部署容器存储插件

由于 Kubernetes 本身的松耦合设计,绝大多数存储项目,比如 Ceph、GlusterFS、NFS 等,都可以为 Kubernetes 提供持久化存储能力。在这次的部署实战中,我会选择部署一个很重要的 Kubernetes 存储插件项目:Rook。
Rook 项目是一个基于 Ceph 的 Kubernetes 存储插件(它后期也在加入对更多存储实现的支持)。不过,不同于对 Ceph 的简单封装,Rook 在自己的实现中加入了水平扩展、迁移、灾难备份、监控等大量的企业级功能,使得这个项目变成了一个完整的、生产级别可用的容器存储插件。 得益于容器化技术,用几条指令,Rook 就可以把复杂的 Ceph 存储后端部署起来:

$ kubectl apply -f https://raw.githubusercontent.com/rook/rook/master/cluster/examples/kubernetes/ceph/common.yaml

$ kubectl apply -f https://raw.githubusercontent.com/rook/rook/master/cluster/examples/kubernetes/ceph/operator.yaml

$ kubectl apply -f https://raw.githubusercontent.com/rook/rook/master/cluster/examples/kubernetes/ceph/cluster.yaml

在部署完成后,你就可以看到 Rook 项目会将自己的 Pod 放置在由它自己管理的两个 Namespace 当中:

$ kubectl get pods -n rook-ceph-system
NAME                                  READY     STATUS    RESTARTS   AGE
rook-ceph-agent-7cv62                 1/1       Running   0          15s
rook-ceph-operator-78d498c68c-7fj72   1/1       Running   0          44s
rook-discover-2ctcv                   1/1       Running   0          15s

$ kubectl get pods -n rook-ceph
NAME                   READY     STATUS    RESTARTS   AGE
rook-ceph-mon0-kxnzh   1/1       Running   0          13s
rook-ceph-mon1-7dn2t   1/1       Running   0          2s

这样,一个基于 Rook 持久化存储集群就以容器的方式运行起来了,而接下来在 Kubernetes 项目上创建的所有 Pod 就能够通过 Persistent Volume(PV)和 Persistent Volume Claim(PVC)的方式,在容器里挂载由 Ceph 提供的数据卷了。 而 Rook 项目,则会负责这些数据卷的生命周期管理、灾难备份等运维工作。这时候,你可能会有个疑问:为什么我要选择 Rook 项目呢? 其实,是因为这个项目很有前途。 如果你去研究一下 Rook 项目的实现,就会发现它巧妙地依赖了 Kubernetes 提供的编排能力,合理的使用了很多诸如 Operator、CRD 等重要的扩展特性(这些特性我都会在后面的文章中逐一讲解到)。这使得 Rook 项目,成为了目前社区中基于 Kubernetes API 构建的最完善也最成熟的容器存储插件。我相信,这样的发展路线,很快就会得到整个社区的推崇。

你可能感兴趣的:(kubernetes,容器,云原生)