- 正则化技术和模型融合等方法提高模型的泛化能力
小赖同学啊
人工智能人工智能
在机器学习和深度学习中,提高模型的泛化能力至关重要,正则化技术和模型融合是两种有效的手段,以下将详细介绍它们的原理、常见方法及代码示例。正则化技术原理正则化是通过在损失函数中添加一个正则化项,来限制模型的复杂度,防止模型过拟合训练数据,从而提高模型在未见过数据上的泛化能力。正则化项通常与模型的参数相关,通过惩罚过大的参数值,使模型更加平滑和简单。常见方法L1正则化(Lasso正则化)原理:在损失函
- 蓝桥杯备赛-基础训练(三)哈希表 day16
清墨璃笙
蓝桥杯散列表算法数据结构python
今天一更赎金信题意:给定一个赎金信(ransom)字符串和一个杂志(magazine)字符串,判断第一个字符串ransom能不能由第二个字符串magazines里面的字符构成。如果可以构成,返回true;否则返回false。(题目说明:为了不暴露赎金信字迹,要从杂志上搜索各个需要的字母,组成单词来表达意思。杂志字符串中的每个字符只能在赎金信字符串中使用一次。)注意:你可以假设两个字符串均只含有小写
- 全市场大模型分类及对比分析报告
早退的程序员
分类数据挖掘人工智能
全市场大模型分类及对比分析报告1.引言随着人工智能技术的飞速发展,大模型(LargeModels)已成为推动AI进步的核心力量。大模型凭借其强大的计算能力和海量数据处理能力,在自然语言处理(NLP)、计算机视觉(CV)、语音识别等领域取得了显著成果。本报告将对全市场中几类主要的大模型进行分类和对比分析,探讨其技术特点、应用场景及未来发展趋势。2.大模型分类根据模型架构、训练目标和应用领域,全市场的
- 零基础学习机器学习分类模型
可喜~可乐
机器学习机器学习学习分类人工智能数据挖掘
下面将带你通过一个简单的机器学习项目,使用Python实现一个常见的分类问题。我们将使用著名的Iris数据集,来构建一个机器学习模型,进行花卉品种的分类。整个过程会包含:原理介绍:机器学习的基本概念。数据加载和预处理:如何加载数据并进行必要的处理。模型训练和评估:使用经典的分类算法——逻辑回归。代码解释:逐步分析代码实现。拓展内容:如何优化和扩展该项目。1.原理介绍1.1机器学习基本概念机器学习(
- 训练神经网络出现nan
崧小果
AI学习记录神经网络深度学习机器学习
在理解和修改QARV的代码时,出现了训练会因为nan而终止的问题,因此学习记录。参考资料Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因_pytorchnan-CSDN博客文章浏览阅读5.6w次,点赞135次,收藏489次。常见原因-1一般来说,出现NaN有以下几种情况:相信很多人都遇到过训练一个deepmodel
- 复试英文准备方法
小王Jacky
计算机英语英语计算机英语
为了高效准备计算机领域的英文文献翻译面试,可以按照以下步骤进行系统训练,重点提升专业术语积累、文献结构理解和即时翻译能力:一、核心能力针对性训练专业术语速记建立术语库:-每天整理《算法导论》《人工智能:现代方法》等经典教材目录中的核心术语(如:Backpropagation-反向传播、HashCollision--用Excel或Anki卡片记录英文术语+中文释义+例句(例:"Thetimecomp
- 深度求索DeepSeek:AI大模型的全域应用与技术突破
量子纠缠BUG
DeepSeek部署DeepSeekAI人工智能easyui前端
——从政务到医疗,解析国产大模型的创新实践与未来图景引言:DeepSeek的技术定位与行业价值DeepSeek(深度求索)作为中国AI领域的新锐力量,凭借"低成本、高精度、强场景适配"的差异化优势,在短短两年内实现了从技术研发到行业落地的跨越式发展。其基于DeepSeek-R1系列大模型的创新架构,以600万美元的超低训练成本(仅为OpenAI同类模型的1/30)3,在自然语言处理、逻辑推理、多模
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- Yolov8分割训练自己的数据集记录
小俊俊的博客
yolov8分割训练自己的数据集
Yolov8分割训练自己的数据集记录第一章、标签制作一、安装labelmelabelme安装很简单,直接在终端输入:pipinstalllabelme启用labelme在终端输入:labelme接下来就是标注数据了。实例分割数据标注选择“创建多边形”标注就行。二、json转txt使用labelme标注的label数据格式为json格式,但是yolov8分割使用的依旧是txt格式。需要进行转换。转换
- 【深度学习】PYTORCH框架中采用训练数据“CIFAR-10”实现RESNET50
别出BUG求求了
深度学习深度学习pytorchcifar-10resnet50神经网络
一、ResNet网络结构二、基本块三、RESNET50代码实现resnet50.pyimporttorchimporttorch.nnasnnfromtorch.nnimportfunctionalasFclassResNet50BasicBlock(nn.Module):def__init__(self,in_channel,outs,kernerl_size,stride,padding):s
- 07 Java 工程师面试技巧篇
明明如月学长
Java校招求职如何拿大厂Offerjava开发语言后端
一、背景Java工程师面试是否有一些技巧可循呢?答案是肯定的。本文结合自己的校招和社招经验,总结一些面试技巧,会结合一些具体案例帮助大家理解这些面试技巧,希望对大家有帮助,帮助大家少走弯路。二、核心技巧2.1会的问题要回答全面有深度面试的关键是:别人会的,你掌握的更全面;别人不太会的你会,你能回答地更有深度。2.1.1会的问题,回答更全面(广度)很多同学在面试过程中遇到会的问题就窃喜,一顿回答之后
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- YOLOv8实例分割训练自己的数据集
NoContours
YOLOpython开发语言
转载https://blog.csdn.net/m0_51530640/article/details/1299752571.利用labelme进行数据标注1.1Labelme安装方法首先安装Anaconda,然后运行下列命令:####################forPython2####################condacreate--name=labelmepython=2.7s
- 总结yolov8做检测训练时所需要的代码
小胡学长
YOLO人工智能深度学习yolov8python1024程序员节
运行模型训练脚本代码:大家可以先在ultralytics/ultralytics文件夹下新建一个mytrain.py,然后直接复制下面的代码,所有训练有关的超参数都可以在这个文件中调节,不懂超参数可以忽略,这里我说一下比较重要的几个参数:importsys#强制扫描导入使用本地ultralytics这个包sys.path.append("E:/ultralytics")#改为文件所在的目录地址fr
- 二叉树-左叶子之和
Hasno.
深度优先算法
代码随想录-刷题笔记404.左叶子之和-力扣(LeetCode)内容:该题仅作为搜索,但是其中的规则让人摸不着头脑,看起来似乎很头疼但是仔细一思考,能发现左叶子无非是这样的定义当发现一个节点的左孩子不为null,并且左孩子的左右孩子都为null(叶子结点)那么可以知道,找到了左叶子OK,接下来就是常规的搜索,只要搜索到满足这样的节点,直接加到一个全局变量就OK了/***Definitionfora
- Qwen2.5 技术报告
三谷秋水
大模型机器学习人工智能语言模型机器学习人工智能
24年12月来自通义千问的论文“Qwen2.5TechnicalReport”。本报告介绍Qwen2.5,这是一系列全面的大语言模型(LLM),旨在满足多样化的需求。与之前的迭代相比,Qwen2.5在预训练和后训练阶段都有显著的改进。在预训练方面,将高质量的预训练数据集从之前的7万亿个token扩展到18万亿个token,为常识、专家知识和推理能力提供坚实的基础。在后训练方面,用超过100万个样本
- 代码随想录算法训练营Day57 | 拓扑排序精讲、dijkstra(朴素版)精讲
Harryline-lx
代码随想录算法
文章目录117.软件构建思路与重点47.参加科学大会思路与重点117.软件构建题目链接:117.软件构建讲解链接:代码随想录状态:一遍AC。思路与重点概括来说,给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。拓扑排序也是图论中判断有向无环图的常用方法。拓扑排序模板题。#include#include#include#includeusingnamespacestd;intmain(){in
- 代码随想录算法训练营第58天|拓扑排序精讲、dijkstra(朴素版)精讲
Yinems
算法
打卡Day581.拓扑排序精讲2.dijkstra(朴素版)精讲1.拓扑排序精讲题目链接:拓扑排序精讲文档讲解:代码随想录给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。拓扑排序要检测这个有向图是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。所以拓扑排序是图论中判断有向无环图的常用方法。拓扑排序的过程,有两步,第一步,找到入度为0的节点,加入结果集;第二步,将该节点从图中移
- DeepSeek的开源之路:一文读懂从V1-R1的技术发展,见证从开源新秀到推理革命的领跑者
算法
作者:京东科技蔡欣彤一、引言:AI时代的挑战与DeepSeek的崛起在大模型时代,AI技术的飞速发展带来了前所未有的机遇,但也伴随着巨大的挑战。随着模型规模的不断扩大,算力需求呈指数级增长,训练成本飙升,而性能提升的边际收益却逐渐递减,形成了所谓的“ScalingLaw”瓶颈。与此同时,OpenAI、谷歌等巨头通过闭源策略垄断技术,限制了中小企业和研究机构的参与空间。在这样的背景下,DeepSee
- DeepSeek Coder
百态老人
人工智能大数据笔记
DeepSeekCoder是由DeepSeekAI推出的一系列代码生成模型,旨在解决编程中的各种任务,如代码生成、补全、调试和优化等。以下是对该模型的详细分析:模型背景与特点模型规模与训练数据:DeepSeekCoder系列模型从头开始训练,覆盖了超过80种编程语言,总参数量从1B到33B不等,其中包含基础版和指令调优版。模型基于高质量的代码数据集进行训练,包含约2万亿个token,其中87%为代
- 深度求索:解析DeepSeek R1与V3模型的技术差异
walkskyer
AI探索deepseekdeepseek-r1deepseek-v3
深度求索:解析DeepSeekR1与V3模型的技术差异引言模型定位与核心能力DeepSeekV3应用场景及示例DeepSeekR1应用场景及示例模型架构与训练方法DeepSeekV3的架构特点DeepSeekR1的强化学习策略性能表现与基准测试DeepSeekV3的性能优势领域DeepSeekR1的性能优势领域应用场景与部署成本分析DeepSeekV3的适用场景及部署成本优势DeepSeekR1的
- 【百问百答系列】-全面了解Transformer(未来发展)
什么都想学的阿超
原理概念#深度学习transformer深度学习人工智能
【百问百答系列】-全面了解Transformer引言初次接触Transformer时,那些复杂的概念和精妙的架构设计,着实让我困惑不已。但随着一个一个问题的深入探究,从它的基本概念、原理架构,到如何训练、模型优化,再到其广泛的应用领域以及充满潜力的未来发展,我对它的理解也越来越深刻。希望借由这个百问百答系列,把在学习Transformer过程中的思考、疑问与收获分享出来。未来发展97.随着数据量的
- 基于深度学习的行人跌倒检测系统:UI 界面 + YOLOv5 + 数据集详解
深度学习&目标检测实战项目
深度学习uiYOLO目标检测人工智能
引言随着人口老龄化的加剧,老年人的安全问题日益引起重视,跌倒事故是导致老年人伤亡的重要原因之一。为了降低跌倒事故的发生率和伤害程度,行人跌倒检测系统的研究变得愈加重要。本文将详细介绍如何基于YOLOv5构建一个行人跌倒检测系统,并设计相应的用户界面,结合深度学习技术实现实时检测。目录引言系统设计概述数据集准备数据集选择数据预处理data.yaml文件模型选择与训练YOLOv5介绍模型训练步骤用户界
- 大模型是如何蒸馏像Qwen-7B,Llama-3 这种小模型的?
闫哥大数据
大模型llama人工智能
1.Qwen-7B和Llama-3的所属公司Qwen-7B:属于阿里巴巴,是“通义千问”系列的开源模型,由阿里云团队研发。Llama-3:属于Meta(原Facebook),是Meta开源的Llama系列大语言模型的最新版本。2.蒸馏数据的使用与模型归属蒸馏技术的作用:DeepSeek将自研大模型(如DeepSeek-R1)生成的80万条高质量解题数据(称为“蒸馏数据”)用于训练Qwen、Llam
- DeepSeek动态增量学习技术详解与实战指南
燃灯工作室
Deepseek人工智能机器学习数据挖掘
一、主题背景1.Why:破解模型持续进化难题传统全量训练模式面临三大困境:金融风控场景中,每周新增百万级欺诈样本时,全量训练耗时从3小时增至8小时(数据量年增长300%)医疗影像诊断模型遇到新病症类型时,需要重新标注全部历史数据智能客服系统无法保留上周学习的行业专有术语DeepSeek方案实现:训练耗时:新增数据量20%时,耗时仅增加35%(传统方法需100%)灾难性遗忘率:在CLVision20
- GLake:优化GPU内存管理与IO传输的开源项目
2401_87458718
开源
GLake:突破GPU内存和IO瓶颈的利器在人工智能快速发展的今天,大模型训练和推理正面临着严峻的挑战。随着模型规模的不断扩大,GPU内存容量和IO带宽的增长速度已经远远跟不上AI模型规模的增长速度,形成了所谓的"内存墙"和"IO传输墙"。为了应对这些挑战,一个名为GLake的开源项目应运而生,旨在通过底层优化来突破GPU内存和IO传输的瓶颈。GLake简介GLake是一个专注于优化GPU内存管理
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- 如何从0开始写一个操作系统
c后端
本贴用来记录作者用c语言写一个操作系统,主要参考《操作系统真相还原》一书写的,同时也会对书里的代码和linux进行对比,尽量看一下现代操作系统中是如何实现的。原书的代码https://github.com/yifengyou/os-elephant/tree/master我会挑一些说说传统的操作系统课一般从内存,虚拟化等等方面讲起,因为是自己实现操作系统,肯定不能一上来就写开始写内存管理这种大活,
- React 中的受控组件与非受控组件:深度剖析与实战应用
银之夏雪丶
react.jsjavascript前端
一、引言在如今的前端开发里,React可是响当当的角色,是咱搭建用户界面的得力帮手。一碰到表单处理和用户输入交互这些事儿,受控组件和非受控组件就派上大用场了,它们就像是两种不一样的工具,各有各的厉害之处。要是咱能把它们摸透了,知道啥时候用啥,那开发出来的React应用肯定既好用又靠谱,用户体验也差不了。二、受控组件(一)定义咋来的受控组件,简单讲,就是让表单元素的值跟React组件的state绑得
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt