- FastGPT 引申:混合检索完整实例
窝窝和牛牛
FastGPT开源
文章目录FastGPT引申:混合检索完整实例1.各检索方式的初始结果2.RRF合并过程3.合并后的结果4.Rerank重排序后5.最终RRF合并6.内容总结FastGPT引申:混合检索完整实例下边通过一个简单的例子说明不同检索方式的分值变化过程,假设我们有一个查询:“如何使用Python进行数据分析”1.各检索方式的初始结果向量检索结果(相似度分数0-1):1.{id:"doc1",q:"Pyth
- FastGPT 源码:RRF、Rerank 相关代码
窝窝和牛牛
FastGPT开源
文章目录FastGPT源码:RRF、Rerank相关代码1.RRF(ReciprocalRankFusion)合并实现2.Rerank二次排序实现3.重排序的主要特点4.整个搜索流程5.这种方式的优势FastGPT源码:RRF、Rerank相关代码下边介绍RRF合并和Rerank二次排序的相关实现:1.RRF(ReciprocalRankFusion)合并实现主要在datasetSearchRes
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-LLaMA-Factory-单机多卡-RTX 4090双卡(五)
开源技术探险家
开源模型-实际应用落地#开源模型-微调实战密码自然语言处理深度学习语言模型
一、前言本篇文章将使用LLaMA-Factory去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。2.2.参数
- FastGPT 源码:混合检索调用链路
窝窝和牛牛
FastGPT人工智能开源
文章目录FastGPT源码:混合检索调用链路1.入口函数2.核心搜索函数3.RRF合并函数4.Rerank重排序函数5.完整流程FastGPT源码:混合检索调用链路主要调用链路如下:1.入口函数在dispatchDatasetSearch(packages/service/core/workflow/dispatch/dataset/search.ts):exportasyncfunctiondi
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- X-LoRA:高效微调 LoRA 系列,实现不同领域知识专家混合模型
yumuing blog
前沿论文解读llama人工智能语言模型
文献卡X-LoRA:MixtureofLow-RankAdapterExperts,aFlexibleFrameworkforLargeLanguageModelswithApplicationsinProteinMechanicsandMolecularDesign作者:EricL.Buehler;MarkusJ.BuehlerDOI:10.48550/arXiv.2402.07148摘要:We
- SQL技能大进阶:解锁高级技巧,提升数据处理效率
大雨淅淅
数据库sql数据库
目录一、引言二、10个不可不知的高级SQL技巧(一)窗口函数:数据分析的得力助手(二)公共表达式(CTEs):让查询更清晰(三)聚合函数:数据汇总的利器(四)递归CTEs:处理分层数据的神器(五)临时函数:简化代码的好帮手(六)使用CASEWHEN枢转数据:灵活处理数据(七)EXCEPTvsNOTIN:查询数据的不同方式(八)自联结:在同一表中查找关联数据(九)RankvsDenseRankvsR
- github tops
妄想出头的工业炼药师
程序人生
https://github.com/search?q=stars%3A%3E1&type=repositories&s=stars&o=deschttps://github.com/EvanLi/Github-Ranking/blob/master/Top100/Top-100-stars.mdStarHistoryBestof2024
- Hive排序函数源码解密:字节跳动面试官的底层三连问
数据大包哥
#Hive#大厂SQL面试指南hivehadoop数据仓库
Hive排序函数源码解密:字节跳动面试官的底层三连问作为数据工程师,理解Hive排序函数的源码就像掌握汽车的发动机原理。本文通过字节跳动内部技术文档,为你揭示三大排序函数的源码级实现差异。一、分布式执行框架Hive中ROW_NUMBER、RANK和DENSE_RANK的底层实现差异主要体现在相同排序键值的处理逻辑上,其核心流程可分为两个阶段:数据分区(Shuffle阶段)根据PARTITIONBY
- ceph fs status 输出详解
时空无限
cephceph
cephfsstatus命令用于显示Ceph文件系统的状态信息,其中各列的含义如下:RANK:元数据服务器(MDS)的等级或标识符。STATE:MDS的当前状态,例如active(活跃)、standby(待机)等。MDS:MDS的名称或标识符。ACTIVITY:MDS当前的活动状态或正在执行的操作。DNS:MDS管理的目录名称(DirectoryNames)的数量。INOS:MDS管理的inode
- joint_info smpl
AI算法网奇
python基础计算机视觉人工智能
生成代码:出处:https://github.com/DART-Lab-LLUI/Metrabs_PoseEstimationdefget_joint_info():joint_names_smpl=('pelv,lhip,rhip,bell,lkne,rkne,spin,lank,rank,thor,ltoe,rtoe,neck,lcla,rcla,head,lsho,''rsho,lelb,r
- java 实现TextRank算法提取文章摘要
melck
java算法开发语言
在Java中,常用的文章摘要提取库是“TextRank”算法。该算法从文本中提取主题和段落,并根据主题和文本中的单词计算权重。使用TextRank实现文章摘要提取具体步骤如下:寻找文章中的关键句子:首先需要分割出文章中的句子,可以使用分词库将文章拆分成句子,然后使用TextRank算法找到文章中与主题相关的句子,这些句子通常包含有标题、关键字等。计算句子的权重:针对关键句子,需要对每个句子计算权重
- 数据挖掘十大经典算法详解(附原理解析与代码示例)
IT程序媛-桃子
华为认证数据挖掘算法经验分享华为
1.PageRank(链接分析)应用场景:搜索引擎排名、社交网络分析核心原理PageRank通过网页之间的链接关系计算网页的重要性,影响力大的网页排名更高。网页影响力=所有入链页面的加权影响力之和阻尼因子D(通常设为0.85)用于模拟用户随机访问网页的行为代码示例importnetworkxasnxG=nx.DiGraph()G.add_edges_from([("A","B"),("A","C"
- FastGPT接入向量模型 M3E 和 重排模型 bge-reranker-large
福葫芦
M3EM3EFASTGPT
一、FastGPT接入向量模型M3E1.拉取m3e镜像#GPU模式启动,并把m3e加载到fastgpt同一个网络dockerpullregistry.cn-hangzhou.aliyuncs.com/fastgpt_docker/m3e-large-api2.查看镜像dockerimages可以按照有一个名称为registry.cn-hangzhou.aliyuncs.com/fastgpt_do
- 图像识别技术与应用第三课
哈哈~156
scikit-learn
一、感知机感知机由美国学者FrankRosenblatt在1957年提出,它根据输入x、权重w和偏差b进行输出,输出结果是二分类(0或1),这和输出实数的回归以及输出概率用于多分类的Softmax不同。像与门、与非门、或门都能通过设定合适的权重和偏差实现。w称为权重:控制输入信号的重要性的参数b称为偏置:偏置是调整神经元被激活的容易程度参数感知机的局限性:感知机的局限性就是只能表示由一条直线分割的
- 2.19 图像技术识别与应用
不要不开心了
java-rabbitmqsentinelhttpxnumpydash
本节课介绍了多层感知机(MLP)及其在图像识别技术中的应用。以下是主要内容总结:1.感知机:-由FrankRosenblatt于1957年提出。-输入为x,权重为w,偏置为b,输出为二分类(0或1)。-可用于实现简单逻辑电路(如与门、与非门、或门)。-局限性:只能表示由一条直线分割的空间,无法处理线性不可分问题(如异或门)。2.多层感知机(MLP):-通过引入隐藏层和激活函数来解决感知机的局限性。
- 提高百度权重有什么用?百度真的也有PR值
shin168688
1
广州网站优化Highallxy给大家讲述提高百度权重有什么用,百度到底有没有PR值吗?虚假的网站权重?怎么说起呢?其实网站权重可以说是一个实际存在但是根本没有量化的一个数据指标。因为很容易做出虚假权重,另外做一个假的网站权重对网站至少在交换链接方面的话可以起到一定的帮助。如果要说网站权重,就要先从Google上面说起。Google的PageRank,以前是每三个月更新一次,不过这个PageRank
- Dify rerank model is deprecated in knowledge base
人工智能
这是可优化的细节。这里过时的提示倾向于说工作空间有一个默认的重新排名模型,但在执行一些前端逻辑后我们发现当前的重新排名模型是空的或未定义的,因此这个当前模型已过时。但这里默认模型实际上是一个所有字段都是空字符串的模型结构:{"provider":"","model":""}在这种情况下,缺省模型实际上是空的且无效。因此,在这里我们不会显示过时标志,而是更有可能告诉用户为工作区配置至少一个重排序模型
- 深入理解TensorFlow中的形状处理函数
SEVEN-YEARS
tensorflow人工智能python
摘要在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_shape_list、reshape_to_matrix、reshape_from_matrix和assert_rank,并通过具体的代码示例来展示它们的使用方法。1.引言在深
- linux4.0内核编译步骤,Ubuntu20.04linux内核(5.4.0版本)编译准备与实现过程-编译过程(2) -Go语言中文社区...
Up酱彡
linux4.0内核编译步骤
前面因为博客园维修,所以内核编译过程一直没有发出来,现在把整个内核过程分享出来。本随笔给出内核的编译实现过程,在编译前需要参照我前面一篇随笔:Ubuntu20.04linux内核(5.4.0版本)编译准备与实现过程-编译前准备(1):https://www.cnblogs.com/iFrank/p/14556664.html切记:注意一点需要参照前一篇随笔,不然编译过程十有八九出问题。开发环境Ub
- PyTorch Lightning多GPU分布式日志介绍
qq_27390023
pytorch人工智能python
分布式日志是指在分布式系统中,多个节点(如多台机器或多个GPU)协同工作时,对系统运行状态、错误信息、性能指标等进行记录的过程。在多GPU/分布式训练环境下,多个进程会同时运行,普通的print()或logging可能会在所有GPU上重复输出,导致日志混乱。PyTorchLightning提供了一些分布式日志控制工具,确保日志仅在rank0进程打印,防止重复输出。lightning_utiliti
- python菜鸟知识
Defry
python
去除空格str='这是含空格'print(f'去除两端空格={str.strip()}')print(f'去除左端空格={str.lstrip()}')print(f'去除右端空格={str.rstrip()}')print(f'去除全部空格={str.replace("","")}')方法返回对象yieldyield':'.join([ip,port])yield{'ranking':ranki
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调&合并-ms-swift-单机多卡-RTX 4090双卡(十五)
开源技术探险家
开源模型-实际应用落地#开源模型-微调实战密码自然语言处理深度学习语言模型
一、前言本篇文章将使用ms-swift去合并微调后的模型权重,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。2.2.参数高效微调(PEF
- 2019年12月中国编程语言排行榜
织网者Eric
程序员就业统计程序员统计编程语言排行编程语言工资中国java
2019年12月4日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下:编程语言比例rankpl_percentage1java33.60%2c/c++16.58%3c#12.59%4javascript12.21%5python7.96%6go7.19%7php4.21%8matlab1.50%9swift0.88%10lua0.84%11perl0
- 使用一个大语言模型对另一个大语言模型进行“调教”
大霸王龙
python人工智能python
使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法:1.准备工作安装必要的库•Transformers:用于加载和训练模型。•Datasets:用于处理数据集。•PEFT:用于微调,特别是LoRA(Low-RankAdaptation)等技术。•Accelerate:用
- 目前市场上深度学习简介及沿革发展
Allen-Steven
python相关应用深度学习人工智能
深度学习是人工智能和机器学习的重要分支,其模型种类繁多,涵盖多个领域,如计算机视觉、自然语言处理、语音识别等。以下是目前市场上主流的深度学习模型,以及它们的发展历史和逐步沿革。1.感知机(Perceptron)及其扩展发展历史1958年:感知机由FrankRosenblatt提出,这是最早的人工神经网络模型,旨在模拟生物神经网络。局限性:感知机无法处理线性不可分问题,这一问题由MarvinMins
- StarRocks-同步hive-textfile格式数据
blazing fire !!!
StarRocks数据仓库starrocks
官方文档对csv,orc,json,parquet都支持的比较好。写文章的时候SR我们生产用的是3.1.x版本1、同步hive表textfile格式的数据hive表结构CREATEEXTERNALTABLEads_d_app_rank_inc(`filename`stringCOMMENT'解析的文件名称',`rank`stringCOMMENT'app排名',`app_name`stringCO
- 练习15. 窗口函数,RANK、DENSE_RANK、ROW_NUMBER
百里守约学编程
#MySQL练习经典45题sql数据库
15.按各科成绩进行排序,并显示排名,Score重复时也继续排名,即不跳跃排名首先介绍三种用于进行排序的专用窗口函数:1、RANK()在计算排序时,若存在相同位次,会跳过之后的位次。例如,有3条排在第1位时,排序为:1,1,1,4······2、DENSE_RANK()这就是题目中所用到的函数,在计算排序时,若存在相同位次,不会跳过之后的位次。例如,有3条排在第1位时,排序为:1,1,1,2···
- 【llm对话系统】大模型 Llama 源码分析之 LoRA 微调
kakaZhui
llama深度学习pytorchAIGCchatgpt
1.引言微调(Fine-tuning)是将预训练大模型(LLM)应用于下游任务的常用方法。然而,直接微调大模型的所有参数通常需要大量的计算资源和内存。LoRA(Low-RankAdaptation)是一种高效的微调方法,它通过引入少量可训练参数,固定预训练模型的权重,从而在保持性能的同时大大减少了计算开销。本文将深入分析LoRA的原理,并结合Llama源码解读其实现逻辑,最后探讨LoRA的优势。2
- 网络爬虫爬取动态网页数据
db_sqy_2012
爬虫
目录一、导学与指南豆瓣单页分析豆瓣多页输出二、理论学习1.抓取动态网页的技术2.Selenium和WebDriver的安装与配置3.Selenium的基本使用三、小结一、导学与指南豆瓣单页分析importjsonimportrequests#基础URL不顶事了url_base="https://movie.douban.com/typerank?type_name=%E5%89%A7%E6%83%
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一