pytorch——基于循环神经网络的情感分类

任务目标

基于给定数据集,进行数据预处理,搭建以LSTM为基本单元的模型,以Adam优化器对模型进行训练,使用训练后的模型进行预测并计算预测分类的准确率。

数据集信息

IMDB数据集是一个对电影评论标注为正向评论与负向评论的数据集,共有25000条文本数据作为训练集,25000条文本数据作为测试集。 已知数据集中数据格式如下表所示。

1、读取数据内容

pytorch——基于循环神经网络的情感分类_第1张图片

2、预处理

首先,对于创建词汇表,记录每一个单词出现的频率,并由此将特征数据集转为特征向量。最后转化为tensor格式 pytorch——基于循环神经网络的情感分类_第2张图片 由于数据量庞大,这里先用PCA将数据降维,这里选择降到20个维度 pytorch——基于循环神经网络的情感分类_第3张图片 将特征数据集和标签进行匹配,并每两个数据作为一个批次,全部数据进行随机的打乱 pytorch——基于循环神经网络的情感分类_第4张图片

3、构建模型

这里采用pytorch中的LSTM来得到LSTM层的状态 pytorch——基于循环神经网络的情感分类_第5张图片 LSTM层总共设置4层,传入初始隐藏状态的细胞内容和输入内容。最后取得最后的时间步的输出

4、模型训练

损失函数选择均方误差函数,优化器选择了Adam优化,总共训练4代 pytorch——基于循环神经网络的情感分类_第6张图片 绘制出损失值的变化图像 pytorch——基于循环神经网络的情感分类_第7张图片

5、模型评估

将测试集的内容导入并做和训练集一样的预处理,然后将测试集放入模型中,将均方误差作为评价标准,计算平均误差。 pytorch——基于循环神经网络的情感分类_第8张图片 并绘制出误差图像 Uploading file... 误差都在0.003到0.005之间,说明模型能够正确预测情感。

完整代码


import gzip
import pandas as pd
from io import StringIO
import torch
import torch.nn as nn
import torch.optim as optim


feat_file_path = 'labeledBow.feat'

with open(feat_file_path, 'r') as file:
    lines = file.readlines()  # 逐行读取文件内容


# 显示部分文件内容(可根据需要调整)
# for line in lines[990:1000]:  # 显示前10行内容
#     print(line)


# In[2]:


labels = []
features = []

for line in lines:
    parts = line.split(' ')
    labels.append(int(parts[0]))
    feats = {}
    for part in parts[1:]:
        index, value = part.split(':')
        feats[int(index)] = float(value)
    features.append(feats)


# In[3]:


# 1. 创建词汇表
vocab = {}
for feat_dict in features:
    vocab.update(feat_dict)

# 创建特征索引到新的连续索引的映射
feature_idx = {feat: idx for idx, feat in enumerate(sorted(vocab.keys()))}

# 2. 创建特征向量
max_features = len(vocab)
feature_vectors = []
for feat_dict in features:
    # 初始化特征向量
    vector = [0.0] * max_features

    # 填充特征向量
    for feat_idx, feat_value in feat_dict.items():
        vector[feature_idx[feat_idx]] = feat_value

    feature_vectors.append(vector)

# 3. 转换为张量
features_tensor = torch.tensor(feature_vectors, dtype=torch.float32)

# 检查张量形状
print(features_tensor.shape)


# In[4]:


from sklearn.decomposition import PCA
import torch

# features_tensor 是特征张量,大小为 torch.Size([25000, 89527])
# 这里将其转换为 NumPy 数组
features_np = features_tensor.numpy()

# 初始化PCA,选择需要降维的维度,这里假设降到100维
pca = PCA(n_components=20)

# 用PCA拟合数据
features_reduced = pca.fit_transform(features_np)

# 将降维后的数据转换回张量形式
features_reduced_tensor = torch.tensor(features_reduced)

# 打印降维后的数据大小
print(features_reduced_tensor.size())


# In[5]:


import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

labels_tensor = torch.tensor(labels, dtype=torch.float32)
features_reduced = features_reduced_tensor.unsqueeze(1) 
labels_t = labels_tensor.unsqueeze(1) 

train_data = TensorDataset(features_reduced, labels_t)
train_loader = DataLoader(train_data, batch_size=2, shuffle=True)

class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers=4):
        super(LSTMModel, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])  # 取最后一个时间步的输出
        return out

# 定义模型参数
input_size = 20
hidden_size = 128
num_layers = 4
output_size = 1

# 初始化模型、损失函数和优化器
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
losses = []  # 存储损失值
# 训练模型
num_epochs = 5
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(num_epochs):
    for i, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)

        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs.squeeze(), targets.squeeze())

        loss.backward()
        optimizer.step()
        losses.append(loss.item())  # 记录损失值
        if (i+1) % 2 == 0:
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()}')




# In[6]:


import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import matplotlib.pyplot as plt
# 绘制损失值变化图
plt.plot(losses, label='Training Loss')
plt.xlabel('Training Steps')
plt.ylabel('Loss')
plt.title('Training Loss over Steps')
plt.legend()
plt.show()


# In[7]:


feat_file_path = 'labeledBow_test.feat'

with open(feat_file_path, 'r') as file:
    lines = file.readlines()  # 逐行读取文件内容

labels_test = []
features_test = []

for line in lines:
    parts = line.split(' ')
    labels_test.append(int(parts[0]))
    feats = {}
    for part in parts[1:]:
        index, value = part.split(':')
        feats[int(index)] = float(value)
    features_test.append(feats)


# In[8]:


# 1. 创建词汇表
vocab = {}
for feat_dict in features_test:
    vocab.update(feat_dict)

# 创建特征索引到新的连续索引的映射
feature_idx = {feat: idx for idx, feat in enumerate(sorted(vocab.keys()))}

# 2. 创建特征向量
max_features = len(vocab)
feature_vectors = []
for feat_dict in features_test:
    # 初始化特征向量
    vector = [0.0] * max_features

    # 填充特征向量
    for feat_idx, feat_value in feat_dict.items():
        vector[feature_idx[feat_idx]] = feat_value

    feature_vectors.append(vector)

# 3. 转换为张量
features_tensor = torch.tensor(feature_vectors, dtype=torch.float32)

# 检查张量形状
print(features_tensor.shape)


# In[9]:


from sklearn.decomposition import PCA
import torch

# features_tensor 是特征张量,大小为 torch.Size([25000, 89527])
# 这里将其转换为 NumPy 数组
features_np = features_tensor.numpy()

# 初始化PCA,选择需要降维的维度,这里假设降到100维
pca = PCA(n_components=20)

# 用PCA拟合数据
features_reduced = pca.fit_transform(features_np)

# 将降维后的数据转换回张量形式
features_reduced_tensor = torch.tensor(features_reduced)

# 打印降维后的数据大小
print(features_reduced_tensor.size())


# In[14]:


from torch.utils.data import DataLoader, TensorDataset

labels_tensor = torch.tensor(labels_test, dtype=torch.float32)
features_reduced = features_reduced_tensor.unsqueeze(1) 
labels_t = labels_tensor.unsqueeze(1) 

train_data = TensorDataset(features_reduced, labels_t)
train_loader = DataLoader(train_data, batch_size=2, shuffle=True)

losses = []

for epoch in range(num_epochs):
    for i, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        outputs = model(inputs)
        loss = criterion(outputs.squeeze(), targets.squeeze())
        losses.append(loss.item()/len(train_loader))
        if (i+1) % 2 == 0:
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()/len(train_loader)}')


# In[15]:


plt.plot(losses, label='Training Loss')
plt.xlabel('Training Steps')
plt.ylabel('Loss')
plt.title('Training Loss over Steps')
plt.legend()
plt.show()

本文由博客一文多发平台 OpenWrite 发布!

你可能感兴趣的:(pytorch)