Linux14.04+cuda7.5+anaconda2+opencv3.0+caffe

现在安装caffe的博客着实很多,但是很多都是复制转载别人的,根本不管对错,有些没写清楚自己的环境,博主自己通过安装,一步一步记下自己的步骤,写下自己踩过的坑,希望大家借鉴,也是给自己做个笔记。

首先介绍博主电脑硬件和所安装的软件版本,gpu是GTX980Ti,Linux版本是14.04(LTS)64位,python环境用的是anaconda2,cuda版本是7.5,OpenCV用的是3.0。

博主在安装之前的机器是纯干净的,啥玩意儿都没有,在安装环境之前,我把硬盘格式化了,所以是特别干净的盘,电脑只有bios,这是我安装的一个前提吧。

一、安装ubuntu

  1. 下载ubuntu


    图一.png
  2. 制作ubuntu的系统u盘(博主是在win7的环境中制作的系统盘),博主用的是UltraISO(这个好早就下了,所以忘了是哪下的了,网上有很多的)


    图二.png

1)博主这个包,解压出来是个exe,可以直接运行,运行界面如下,选择试用即可


图三.png

2)进入如下界面,选择 文件-打开


图四.png

3)然后找到刚刚下载的ubuntu的iso文件(ubuntu-14.04-desktop-amd64.iso)


图五.png

4)可以看见软件打开了iso镜像文件


图六.png

5)选择 启动-写入硬盘映像


图七.png

6)插入u盘,然后更改如下参数(选择USB-HDD,选择便捷启动中的syslinux,最后点击是)操作如下


图八.png
图九.png
图十.png

7)最后选择写入,等待u盘做好


图十一.png
  1. 将制作好的系统盘插入即将安装系统的电脑,开机,一直按f2(装系统的电脑也就是要安装ubuntu的电脑主板是华硕的),进入bios后,选择u盘启动,然后可以进入u盘系统盘,选择install ubuntu,之后按照提示安装即可。

  2. 安装好后拔出u盘,重启电脑

二、安装cuda

简单来说,按照官方文档安装即可,请认真阅读,不要侥幸的跳过任何一个步骤任何一个错误,我开始用的是.run文件装的,不是很顺手,不方便,还要另装显卡驱动,容易出错,后来同学之前踩过这个坑,建议用deb安装,很方便,换成.deb方式安装的,三条语句搞定。
官方安装文档网址

  1. [下载cuda网址](https://developer.nvidia.com/cuda-toolkit-archive)
图十二.png
图十三.png
  1. 下载完后运行md5sum和下面网页中的checksums对比看看下载是否正确完成


    图十四.png
  2. 接下来三条语句搞定,不过建议还是认真看看文档,就当学习一下英文了


    图十五.png
  3. 在设置环境变量的时候要注意,官方文件写在终端输入

export PATH=/usr/local/cuda-7.5/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH

这样做,当你关闭终端的时候变量就没了。
本人在/etc/profile里末尾添加上面两句,添加完了回到终端source /etc/profile,这样就不用重启就能改变变量配置了。

  1. 接下来是检查是否安装cuda成功,cuda-install-samples-7.5.sh ./ ,表示在当前文件夹下安装samples,然后进入NVIDIA_CUDA-7.5_Samples下make

  2. make成功后cd到NVIDIA_CUDA-7.5_Samples/bin/x86_64/linux/release下,运行./deviceQuery看是否安装成功

  3. 运行./bandwidthTest看显卡和cuda有没有连接成功

三、安装anaconda2

安装anaconda,从官网下载anaconda2,我下的是Anaconda2-4.2.0-Linux-x86_64.sh,然后cd到包含该文件的路径下,运行bash Anaconda2-4.2.0-Linux-x86_64.sh,一路enter,第一个问题Do you approve the license terms?选yes,然后问你安装路径,我和[4]一样安装在/usr/local/anaconda2下,之后问你是否添加anaconda路径,选yes,,它自动将anaconda2的bin路径添加到~/.bashrc,然后就安装好了。

在终端输入python命令,如果没报错,并且显示出如下界面,说明anaconda2安装完毕。

图十六.png

编译caffe时会提示找不到hdf5相关的动态库
默认在usr/lib/x86_64-linux-gnu下找,可以创建anaconda2中的库的软连接,在终端运行如下命令:

sudo ln -s /usr/local/anaconda2/lib/libhdf5_hl.so.10  /usr/lib/x86_64-linux-gnu/libhdf5_hl.so.10
sudo ln -s /usr/local/anaconda2/lib/libhdf5.so.10  /usr/lib/x86_64-linux-gnu/libhdf5.so.10

四、安装OpenCV3

OpenCV3,从官网下载opencv3网址,方法看opencv3的installation in linux,在downloads界面的右上角

图十七.png

图十八.png

博主最近发现一个很严重的问题,如果python用的是anaconda的话,按照上述操作编译会有问题,会有没有cv2.so库的情况出现,所以cmake的命令要有所改变,我的命令如下:

cmake -D CMAKE_BUILD_TYPE=RELEASE \
      -D INSTALL_C_EXAMPLES=OFF \
      -D INSTALL_PYTHON_EXAMPLES=ON \
      -D CMAKE_INSTALL_PREFIX=/usr/local \
      -D PYTHON_INCLUDE_DIR=/usr/local/anaconda2/include/python2.7/ \
      -D PYTHON_INCLUDE_DIR2=/usr/local/anaconda2/include/python2.7/ \
      -D PYTHON_LIBRARY=/usr/local/anaconda2/lib/libpython2.7.so \
      -D PYTHON_LIBRARY2=/usr/local/anaconda2/lib/libpython2.7.so \
      -D PYTHON_PACKAGES_PATH=/usr/local/anaconda2/lib/python2.7/site-packages/ \
      -D BUILD_EXAMPLES=ON \
      -D BUILD_NEW_PYTHON_SUPPORT=ON \
      -D BUILD_opencv_python3=OFF \
      -D BUILD_opencv_python2=ON ..

如果你不知道你anaconda装的路径,可以在python环境中执行:

import sys
sys.prefix

编译出来的cv2.so在文件夹/usr/local/lib/python2.7/site-packages下面,通过使用命令:

sudo ln -s /usr/local/lib/python2.7/site-packages/cv2.so  /usr/local/anaconda2/lib/python2.7/site-packages/

在anaconda安装文件夹下建立cv2.so的软连接,

然后在python下执行import cv2,就不会报ImportError: No module named cv2这样的错误了。

五、接下来是编译caffe的过程

官网安装方法,因为官网不是用的anaconda2和opencv3,所以安装方法有点不一样。

  1. 下载其他依赖包
    sudo apt-get install libatlas-base-dev
    sudo apt-get install libprotobuf-dev
    sudo apt-get install libleveldb-dev
    sudo apt-get install libsnappy-dev 
    sudo apt-get install libboost-all-dev
    sudo apt-get install libhdf5-serial-dev
    sudo apt-get install libgflags-dev
    sudo apt-get install libgoogle-glog-dev
    sudo apt-get install liblmdb-dev
    sudo apt-get install protobuf-compiler
  1. 下载caffe

github中下载caffe的网址

官网编译方法如下

编译caffe官网网址,下面是根据自己的环境更改caffe文件夹下的makefile.config文件。

根据我现有的环境(linux14.04 + anaconda2 + cuda7.5 + opencv3.0),我的Makefile如下:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#       You should not set this flag if you will be reading LMDBs with any
#       possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
                -gencode arch=compute_20,code=sm_21 \
                -gencode arch=compute_30,code=sm_30 \
                -gencode arch=compute_35,code=sm_35 \
                -gencode arch=compute_50,code=sm_50 \
                -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
                /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := /usr/local/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                $(ANACONDA_HOME)/include/python2.7 \
                $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

接下来,运行下面的语句,编译并检测caffe是否正确编译:

make all  #make -j8可以加快编译速度
make test
make runtest

出现如下错误,可能是caffe makefile找不到python路径,该配置文件中的anaconda路径不对,检查makefile.config文件中的ANACONDA_HOME := /usr/local/anaconda2语句

图十九.png

如果没有报错,caffe就安装好了,但是此时python还不能import caffe,要使用caffe的python的接口,还需要执行下面语句:

make pycaffe

在终端输入python进入python运行环境,输入import caffe,会出现下列错误:

图二十.png

在python环境中,输入下列命令:

import sys
sys.path.append('/home/hpc/caffe/python')    #添加caffe根目录下的python路径,按照自己的路径进行更改
import caffe

出现下面界面,说明能成功使用caffe的python接口了。


图二十一.png

但是在添加完caffe的python路径后,导入caffe还是会报错,错误是ImportError: No module named google.protobuf.internal,说明没有按照protobuf,但是之前按照caffe之前是安装过的,caffe也编译完了,还有一个原因就是机器里有两个python环境,一个是系统自带的,另一个就是anaconda的环境:

pip install protobuf
/home/username/anaconda2/bin/pip install protobuf    #这是我的anaconda安装路径,路径改成你自己的

最后在python环境中,输入下列命令:

import sys
sys.path.append('/home/hpc/caffe/python')    #添加caffe根目录下的python路径,按照自己的路径进行更改
import caffe

应该没有问题了,界面如下


图二十二.png

如果是写.py文件,可以在.py文件中添加下列语句:

CAFFE_ROOT = '/home/hpc/caffe'
sys.path.append(CAFFE_ROOT+'/python')  # Add caffe python path so we can import it

一些指令:

pkg-config --modversion opencv    #查看opencv的安装版本
protoc --version    #查看protobuf安装版本

你可能感兴趣的:(Linux14.04+cuda7.5+anaconda2+opencv3.0+caffe)