- Linux学习笔记 - 3
Norvyn_7
Linux学习linux学习笔记
Linux学习笔记-3本篇将介绍which、find、grep、echo、less、tail以及管道符|的使用。1.查看命令的程序文件1.1which查看命令的程序文件语法:which[命令]用于查找某个命令的程序文件路径。示例:whichcd会显示cd命令的实际路径。2.查找文件2.1find查找文件语法:find[查找路径][-name]["要查找的文件名"]-name:按文件名查找,支持通配
- Linux学习笔记 - 6
Norvyn_7
Linux学习linux学习笔记
Linux学习笔记-6本篇将介绍网络配置、传输工具、端口管理、进程管理、主机监控及环境变量相关命令。1.IP地址和主机名1.1IP地址作用:用于计算机之间的网络通信。IPv4格式:a.b.c.d(每个数字范围0~255),例如192.168.1.1。查看本机IP:ifconfig#需先安装net-toolsipaddr#无需安装,推荐使用安装ifconfig:CentOS:yum-yinstall
- 《DeepSeek从入门到精通》下载
疯狂吧小飞牛
deepseek深度学习自然语言处理人工智能
下载地址:《DeepSeek从入门到精通》下载–无敌牛DeepSeek:从入门到精通@新媒沈阳团队:余梦珑博士后清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生
- 大学生HTML期末大作业——HTML+CSS+JavaScript学校网站(成都大学)
无·糖
Web前端期末大作业html课程设计css大学生前端javascript大学生大作业
HTML+CSS+JS【学校网站】网页设计期末课程大作业web前端开发技术web课程设计网页规划与设计文章目录一、网站题目二、网站描述三、网站介绍四、网站效果五、️网站代码六、️如何学习进步七、☠️更多干货文章目录一、网站题目学校网站(成都大学)6页含JQ二、网站描述总结了一些学生网页制作的经验:一般的网页需要融入以下知识点:div+css布局、浮动、定位、高级css、表格、表单及验证、js轮
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- NVIDIA B200:高性能 AI 计算的未来
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能nvidiab200
简介对于一直关注人工智能和机器学习快速发展的人来说,新硬件的发布总是备受期待。每一代新处理器和加速器都有可能极大地改变我们开发和部署大规模机器学习模型的方式。NVIDIA长期处于人工智能硬件开发的最前沿,它再次凭借由Blackwell架构驱动的B200提高了标准。最近的MLPerf基准测试提供了B200的首批可靠数据,结果非常出色。在Llama270B型号上运行推理时,B200每秒可处理11,26
- Java部署机器学习模型:方案二(基于DJL)
iiilloi
机器学习springspringboot
DJL(DeepJavaLibrary)是由亚马逊公司开发的一款开源的深度学习框架,它旨在为Java开发人员提供一个简单而强大的API,使得在Java中使用深度学习变得更加容易。DJL有以下几个方面优势:支持多个底层引擎DJL支持多个底层引擎,包括MXNet、TensorFlow和PyTorch等。这使得DJL可以在多个平台上使用,包括Java、Android、iOS和RaspberryPi等。易
- 专栏简介:从入门到精通 JavaScript 1000例实战开发
小蘑菇二号
入门到精通JavaScript1000例实战开发JavaScript开发语言
目录专栏简介:从入门到精通JavaScript1000例实战开发专栏特色目标受众学习收获专栏目录:从入门到精通JavaScript1000例实战开发第一部分:JavaScript基础篇第二部分:JavaScript核心进阶篇第三部分:前端框架与库篇第四部分:高级实战篇第五部分:前沿技术篇附录专栏简介:从入门到精通JavaScript1000例实战开发本专栏旨在为开发者提供一套系统化的学习路径,帮助
- Python MoviePy库:视频处理与编辑的强大工具
程序员喵哥
python音视频开发语言
更多Python学习内容:ipengtao.com随着视频内容的广泛应用,视频编辑和处理的需求不断增长。传统的非线性编辑软件功能强大,但对于自动化处理和批量操作来说,程序化的处理显得更为高效。MoviePy是一个基于Python的视频编辑库,它提供了丰富的视频处理功能,支持对视频的剪辑、合并、特效添加以及音频处理等操作。MoviePy的易用性和灵活性使得它成为开发者和数据科学家进行视频编辑的利器。
- Vue 3最新组件解析与实践指南:提升开发效率的利器
Aic山鱼
vue.js前端javascript
目录引言一、Vue3核心组件特性解析1.CompositionAPI与组件逻辑复用2.内置组件与生命周期优化3.新一代UI组件库推荐二、高级组件开发技巧1.插件化架构设计2.跨层级组件通信三、性能优化实战1.惰性计算与缓存策略2.虚拟滚动与列表优化3.TreeShaking与按需引入四、总结作者:Aic山鱼|2025年2月17日作者推荐:"近期我偶然邂逅了一个极为出色的人工智能学习平台,它不仅内容
- 机器学习的模型类型(Model Types)
路野yue
人工智能机器学习
1.传统机器学习模型线性模型(LinearModels):线性回归(LinearRegression):用于回归任务,拟合线性关系。逻辑回归(LogisticRegression):用于分类任务,输出概率值。岭回归(RidgeRegression)和Lasso回归(LassoRegression):带正则化的线性回归。树模型(Tree-basedModels):决策树(DecisionTree):
- 【网络安全】零基础入门网络安全劝退指北
网络安全指导员
程序员黑客网络安全web安全安全
作为从16年接触网络安全的小白,谈谈零基础如何入门网络安全,有不对的地方,请多多指教。这些年最后悔的事情莫过于没有把自己学习的东西积累下来形成一个知识体系。后续我也会陆续的整理网络安全的相关学习资料及文章,与大家一起探讨学习。1.如何入门简单了解网络安全网络安全就是指的确保网络系统中的数据不被别人破坏,而网安工程师就是涉及程序来维护网络安全。网安方向有很多职位,比如安全产品工程师,安全分析师,数据
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- Spring全面详解:架构体系演变及其入门(学习总结)
小夕Coding
大数据系列springjava大数据javabeanspringboot
文章目录架构体系演变背景单一应用架构垂直应用架构分布式服务架构流动计算架构入门配置文件yaml语法快速入门基本格式要求对象数组常量一些特殊符号使用yaml进行配置注解学习反射获取注解配置文件优先级存放目录Application属性文件,按优先级排序,位置高的将覆盖位置读取顺序web开发嵌入式Servlet容器支持扫描Servlet,过滤器和listeners1、springboot整合servle
- 机器学习_19 集成学习知识点总结
数据媛
机器学习集成学习人工智能pythonscikit-learnnumpyscipy
集成学习(EnsembleLearning)是一种强大的机器学习范式,通过组合多个模型的预测结果来提高整体性能和泛化能力。它在分类、回归和特征选择等任务中表现出色,广泛应用于各种实际问题。今天,我们就来深入探讨集成学习的原理、实现和应用。一、集成学习的基本概念1.1集成学习的定义集成学习通过组合多个学习器(通常称为“弱学习器”)的预测结果,构建一个更强的模型(“强学习器”)。其核心思想是利用多个模
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- 深度学习归一化与正则化
鱼儿也有烦恼
深度学习深度学习
文章目录深度学习归一化与正则化1.归一化(Normalization)2.正则化(Regularization)深度学习归一化与正则化1.归一化(Normalization)定义:归一化是指通过某种算法将输入数据或神经网络层的激活值处理后限制在我们需要的特定范围内。它的目的是为了方便后续的数据处理,并加快程序的收敛速度。归一化的主要作用是统一样本的统计分布。在0到1之间的归一化代表的是概率分布,而
- 云上玩转DeepSeek系列之三:PAI-RAG集成联网搜索,构建企业级智能助手
阿里云大数据AI技术
deepseekPAI阿里云人工智能RAG
正文DeepSeek系列模型以卓越性能在全球范围内备受瞩目,在各类评测中表现优异,推理性能接近甚至超越国际顶尖闭源模型。2025年2月以来,阿里云人工智能平台PAI持续推出围绕DeepSeek系列模型的最佳实践,包含快速部署、应用搭建、蒸馏、微调等各个环节,让企业和个人开发者可以在云上高效、灵活地部署和探索DeepSeek-R1、DeepSeek-V3等模型。本文将为您带来“基于PAI-RAG构建
- 机器学习—逻辑回归
60岁的程序猿
1024程序员节机器学习逻辑回归人工智能算法
本内容是博主自学机器学习总结的。由于博主水平有限,内容可能有些许错误。如有错误,请发在评论区。目录1、基础概念1.1、什么是逻辑回归1.2、逻辑回归与线性回归的区别1.3应用场景2、逻辑回归模型2.1、模型定义2.2、Sigmoid函数2.3、决策边界2.4、概率解释3、模型训练3.1、损失函数3.2、梯度下降法3.3、牛顿法3.4、拟牛顿法3.4、正则化3.5、总结4、多分类问题4.1、一对多(
- Linux升级openssl解决方案
爱编程的喵喵
Linux解决方案linuxopenssl升级openssl解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Linux升级openssl解决方案
- 【机器学习】向量化使得简单线性回归性能提升
若兰幽竹
机器学习机器学习线性回归人工智能
向量化使得简单线性回归性能提升一、摘要二、向量化运算概述三、向量化运算在简单线性回归中的应用四、性能测试与结果分析一、摘要本文主要讲述了向量化运算在简单线性回归算法中的应用。通过回顾传统for循环方式实现的简单线性回归算法,介绍了如何通过最小二乘法计算a的值。然而,这种方式在计算性能上存在效率较低的问题。为了提高性能,视频引入了向量化运算的概念,即将计算过程从循环方式转变为向量之间的计算。通过向量
- 深度学习探索-基础篇-正则化篇
神仙盼盼
深度学习入门篇深度学习人工智能
文章目录一、正则化介绍1.1正则化的简介1.2正则化的方法介绍1.3正则化的用途二、正则化的详细介绍2.1L1正则化2.2L2正则化2.2.1L2正则化的工作原理2.2.2如何在训练中应用L2正则化2.2.3L2正则化的效果2.3WeightDecay2.4Dropout一、正则化介绍1.1正则化的简介在深度学习领域中,正则化是一种用于防止过拟合的技术。过拟合是指模型在训练数据上表现良好,但在未见
- 跨越感官鸿沟:AGI多模态融合技术解析
.猫的树
AGI-通用人工智能多模态学习AGI深度学习
文章目录引言:当AGI开始拥有"五感"一、多模态认知的理论基础1.1人类感官系统的启示1.2多模态表示学习的数学框架二、多模态融合的核心技术2.1跨模态对齐架构Transformer-based模型2.2动态模态融合2.3多模态自监督学习三、关键技术挑战与突破3.1模态差异鸿沟3.2多模态时序同步3.3认知一致性维护四、AGI多模态系统的实现路径4.1感知-认知-决策闭环4.2世界模型构建4.3具
- DataFrame学习
刘同学Python学习日记
学习记录Pandas大数据人工智能学习pythonpandas
DataFrame是Pandas中最重要的数据结构之一,它类似于电子表格或SQL表,但具有更强大的功能。DataFrame是由行和列组成的二维标签数据结构,可以存储许多不同类型的数据,并且可以轻松地处理缺失值和执行数据操作。简单点说DataFrame就像是一个Excel表格或者数据库中的一张表,你可以把它想象成一个二维的数据容器,有行和列。每一行代表数据的一个样本,每一列代表一种属性或特征。举个例
- Netty学习 - 编译Netty4.2
wisfy_21
Netty学习
编译Netty4.2版本遇到一些问题:首先是缺失io.netty.util.collection.IntObjectHashMap这类collection包。这个问题的原因是,在netty-common下,这些是需要根据模板生成类,所以需要先编译打包netty-common。在netty-common下执行package的时候,会遇到另一个错误io.netty:netty-dev-tools:ja
- 学习threejs,使用MeshBasicMaterial基本网格材质
gis分享者
gis工程师threejsthreejsBasicMaterial基本网格材质
⚕️主页:gis分享者⚕️感谢各位大佬点赞收藏⭐留言加关注✅!⚕️收录于专栏:threejsgis工程师文章目录一、前言1.1☘️THREE.MeshBasicMaterial二、使用MeshBasicMaterial基本网格材质1.☘️实现思路2.☘️代码样例一、前言本文详细介绍如何基于threejs在三维场景中使用MeshBasicMaterial基本网格材质,亲测可用。希望能帮助到您。
- 【深度学习】Unet的基础介绍
牧歌悠悠
深度学习人工智能算法深度学习人工智能U-net
U-Net是一种用于图像分割的深度学习模型,特别适合医学影像和其他需要分割细节的任务。如图:Unet论文原文为什么叫U-Net?U-Net的结构像字母“U”,所以得名。它的结构由两个主要部分组成:下采样(编码器):图像逐渐被缩小并且提取特征。上采样(解码器):逐渐恢复图像的尺寸,并通过“跳跃连接”将高分辨率的特征与低分辨率的特征结合,以保持细节。网络结构U-Net通常包括以下几部分:(1)下采样(
- 【STM32学习记录06】STM32功能介绍—时钟、复位和电源
触角01010001
STM32stm32学习嵌入式硬件
主题内容教学目的/扩展视频STM32功能介绍(重点课程)包括ARM核心,内存,时钟,复位,电源,电压监控,看门狗,低功耗,ADC,中断,IO接口,调试模式,定时器,通信接口等功能的基础知识介绍。对单片机内部各功能有初步的认识,不要求深入了解。为未来细讲做信心上的准备。学习课程来源于洋桃电子,杜洋老师文章目录学习目标学习重点扩展⚠️注意事项相关资源学习目标对单片机内部的时钟,复位,电源各功能有初步的
- 【2025年春季】全国CTF夺旗赛-从零基础入门到竞赛,看这一篇就稳了!
白帽子凯哥
web安全网络安全pythonlinuxCTF夺旗赛
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包目录一、CTF简介二、CTF竞赛模式三、CTF各大题型简介四、CTF学习路线4.1、初期1、html+css+js(2-3天)2、apache+php(4-5天)3、mysql(2-3天)4、python(2-3天)5、burpsuite(1-2天)4.2、中期1、SQL注入(7-8天)2、文件上传(7-8天)3、其他漏洞(14-15
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt