二叉搜索树, AVL平衡二叉树,红黑树, B树,B-树,B+树,B*树, trie树

二叉搜索树

先介绍下二叉搜索树
1.所有非叶子结点至多拥有两个儿子(Left和Right);
2.所有结点存储一个关键字;
3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

二叉搜索树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;
否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入
右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

如果二叉搜索树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;
但它比连续内存空间的二分查找的优点是,改变二叉搜索树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
但二叉搜索树在经过多次插入与删除后,有可能导致不同的结构:
二叉搜索树, AVL平衡二叉树,红黑树, B树,B-树,B+树,B*树, trie树_第1张图片右边也是一个二叉搜索树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用二叉搜索树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;

实际使用的二叉搜索树都是在原二叉搜索树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在二叉搜索树中插入和删除结点的策略;

平衡二叉树

平衡二叉树(AVL树),又称自平衡二叉查找树。平衡二叉树必定是二叉搜索树,反之则不一定。满足下面的条件:
1、左结点小于根节点,右结点大于根节点
2、左子树和右子树的高度差不得超过1。这里通过平衡因子记录左右子树的高度差。平衡因子:左子树的高度减去右子树的高度。由平衡二叉树的定义可知,平衡因子的取值只可能为0,1,-1.分别对应着左右子树等高,左子树比较高,右子树比较高。

可以是空树。
假如不是空树,任何一个结点的左子树与右子树都是平衡二叉树,并且高度之差的绝对值不超过1

平衡因子:左子树的高度减去右子树的高度。由平衡二叉树的定义可知,平衡因子的取值只可能为0,1,-1.分别对应着左右子树等高,左子树比较高,右子树比较高。

平衡二叉树的结构定义需要什么内容了:
数据成员,平衡因子,以及左右分支。

如何调整为平衡二叉树详见:
平衡二叉树,AVL树之图解篇:

B树(B-树)

是一种多路搜索树(并不是二叉的):
1.定义任意非叶子结点最多只有M个儿子;且M>2;
2.根结点的儿子数为[2, M];
3.除根结点以外的非叶子结点的儿子数为[M/2, M];
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1;
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8.所有叶子结点位于同一层;
如:(M=3)
二叉搜索树, AVL平衡二叉树,红黑树, B树,B-树,B+树,B*树, trie树_第2张图片

B-树的搜索
从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,
否则进入查询关键字所属范围的儿子结点;
重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性
1.关键字集合分布在整颗树中;
2.任何一个关键字出现且只出现在一个结点中;
3.搜索有可能在非叶子结点结束;
4.其搜索性能等价于在关键字全集内做一次二分查找;
5.自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:
二叉搜索树, AVL平衡二叉树,红黑树, B树,B-树,B+树,B*树, trie树_第3张图片其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B+树

B+树是B-树的变体,也是一种多路搜索树:
1.其定义基本与B-树同,除了:
2.非叶子结点的子树指针与关键字个数相同;
3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树
(B-树是开区间);
5.为所有叶子结点增加一个链指针;
6.所有关键字都在叶子结点出现;
如:(M=3)
二叉搜索树, AVL平衡二叉树,红黑树, B树,B-树,B+树,B*树, trie树_第4张图片

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
2.不可能在非叶子结点命中;
3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
4.更适合文件索引系统;

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3
(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

Trie树

Trie树详细介绍

又名单词查找树,一种树形结构,常用来操作字符串。它是不同字符串的相同前缀只保存一份。相对直接保存字符串肯定是节省空间的,但是它保存大量字符串时会很耗费内存(是内存)。

类似的有

前缀树(prefix tree),后缀树(suffix tree),radix tree(patricia tree, compact prefix tree),critbit tree(解决耗费内存问题),以及前面说的double array trie。

前缀树:字符串快速检索,字符串排序,最长公共前缀,自动匹配前缀显示后缀。
后缀树:查找字符串s1在s2中,字符串s1在s2中出现的次数,字符串s1,s2最长公共部分,最长回文串。
radix tree:linux内核,nginx

小结

二叉搜索树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

B(B-)树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;是为文件系统而生的

B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

B树,B+树,B*树:它们特点是一样的,是多路查找树,一般用于数据库系统中,为什么,因为它们分支多层数少呗,都知道磁盘IO是非常耗时的,而像大量数据存储在磁盘中所以我们要有效的减少磁盘IO次数避免磁盘频繁的查找。

AVL树:平衡二叉树,一般是用平衡因子差值决定并通过旋转来实现,左右子树树高差不超过1,那么和红黑树比较它是严格的平衡二叉树,平衡条件非常严格(树高差只有1),只要插入或删除不满足上面的条件就要通过旋转来保持平衡。由于旋转是非常耗费时间的。我们可以推出AVL树适合用于插入删除次数比较少,但查找多的情况。

红黑树:平衡二叉树,通过对任何一条从根到叶子的简单路径上各个节点的颜色进行约束,确保没有一条路径会比其他路径长2倍,因而是近似平衡的。所以相对于严格要求平衡的AVL树来说,它的旋转保持平衡次数较少。用于搜索时,插入删除次数多的情况下我们就用红黑树来取代AVL。
(现在部分场景使用跳表来替换红黑树,可搜索“为啥 redis 使用跳表(skiplist)而不是使用 red-black?”)

以上几种树都是有序的,如果你采用合适的算法遍历整个数,可以得到一个有序的列表。这也是为什么如果有数据库索引的情况下,你order by你索引的值,就会速度特别快,因为它并没有给你真的排序,只是遍历树而已

参考:
https://blog.csdn.net/sdujava2011/article/details/69943857
https://blog.csdn.net/sinat_41144773/article/details/89576206

你可能感兴趣的:(leetcode,数据结构,算法)