lwip移植

转载地址:https://www.cnblogs.com/electron/p/3546508.html
资源下载:链接: https://pan.baidu.com/s/1kHu7E9qpv5LUtGrkK6jfVQ 密码: hb6n

LwIP移植和使用

本手册基于lwip-1.4.x编写,本人没有移植过1.4.0之前的版本,更早的版本或许有差别

LwIP官网是:http://savannah.nongnu.org/projects/lwip/

你可以从这里获取源代码。当然也可以从Git获取源代码:

git clone git://git.savannah.nongnu.org/lwip.git

LwIP以BSD协议发布源代码,我们可以自由的使用,修改,发布或不发布源代码。

附件中有我移植的文件,可以用来参考。祝你移植顺利。

移植

1)新建几个头文件:

include/lwipopts.h // lwip配置文件

include/arch/cc.h // 平台相关。类型定义,大小端设置,内存对齐等

include/arch/perf.h // 平台相关的性能测量实现(没用)

include/arch/sys_arch.h // RTOS抽象层。信号量,mbox等类型定义,函数声明

lwipopts.h // lwip配置文件,详见附件

cc.h //类型定义,大小端设置,内存对齐等

#ifndef __CC_H__ 
#define __CC_H__ 

#include 

/* Types based on stdint.h */
typedef uint8_t            u8_t; 
typedef int8_t             s8_t; 
typedef uint16_t           u16_t; 
typedef int16_t            s16_t; 
typedef uint32_t           u32_t; 
typedef int32_t            s32_t; 
typedef uintptr_t          mem_ptr_t; 
 
/* Define (sn)printf formatters for these lwIP types */
#define U16_F "hu"
#define S16_F "hd"
#define X16_F "hx"
#define U32_F "lu"
#define S32_F "ld"
#define X32_F "lx"
#define SZT_F "uz"
 
/* 选择小端模式 */
#define BYTE_ORDER LITTLE_ENDIAN
 
/* Use LWIP error codes */
#define LWIP_PROVIDE_ERRNO

/* 内存对齐 */
#if defined(__arm__) && defined(__ARMCC_VERSION) 
/* Keil uVision4 tools */
    #define PACK_STRUCT_BEGIN __packed
    #define PACK_STRUCT_STRUCT
    #define PACK_STRUCT_END
    #define PACK_STRUCT_FIELD(fld) fld
#define ALIGNED(n)  __align(n)

#endif

perf.h // 两个宏定义为空即可

#ifndef __PERF_H__
#define __PERF_H__

#define PERF_START    /* null definition */
#define PERF_STOP(x)  /* null definition */

#endif /* END __PERF_H__ */

sys_arch.h

RTOS抽象层的类型定义,函数声明,详细内容见 doc/sys_arch.h

2建立RTOS抽象层文件:

port/sys_arch.c // RTOS抽象层实现

为了屏蔽不同RTOS在信号量,互斥锁,消息,任务创建等OS原语使用上的差别,lwip构造了一个RTOS的抽象层,规定了OS原语的数据类型名称和对应方法名称。我们要做的就是根据所用RTOS的api去实现这些原语。

比如移植lwip到raw-os上,信号量的移植:

类型定义,宏定义在sys_arch.h中

struct _sys_sem 
{
    RAW_SEMAPHORE *sem;
};

typedef struct _sys_sem sys_sem_t; // sys_sem_t是lwip的信号量类型名 
#define SYS_SEM_NULL NULL 
#define sys_sem_valid(sema) (((sema) != NULL) && ((sema)->sem != NULL)) 
#define sys_sem_set_invalid(sema) ((sema)->sem = NULL) 
err_t sys_sem_new(sys_sem_t *sem, u8_t count)
{ 
    RAW_SEMAPHORE *semaphore_ptr = 0;
    if (sem == NULL) 
    {
        RAW_ASSERT(0); 
    }

    semaphore_ptr = port_malloc(sizeof(RAW_SEMAPHORE));
    if(semaphore_ptr == 0)
    {
        RAW_ASSERT(0);
    }

    //这是raw-os的API 
    raw_semaphore_create(semaphore_ptr, (RAW_U8 *)"name_ptr", count);
    sem->sem = semaphore_ptr;

    return ERR_OK;
} 

void sys_sem_free(sys_sem_t *sem)
{
    if((sem == NULL) || (sem->sem == NULL)) 
    {
        RAW_ASSERT(0);
    }

    raw_semaphore_delete(sem->sem); //这是raw-os的API 

    raw_memset(sem->sem, sizeof(RAW_SEMAPHORE), 0); 
    port_free(sem->sem);
    sem->sem = NULL;
}


还有几个函数就不一一列举了,如有疑问看doc/sys_arch.txt

3修改网卡框架文件:

netif/ethernetif.c
该文件是作者提供的网卡驱动和lwip的接口框架。

该文件中要改动的函数只有3个:

static void low_level_init(struct netif *netif);

static err_t low_level_output(struct netif *netif, struct pbuf *p);

static struct pbuf *low_level_input(struct netif *netif);

/* 你可以给网卡起个名字 */
/* Define those to better describe your network interface. */
#define IFNAME0 'e'
#define IFNAME1 '0'

/**
 * Helper struct to hold private data used to operate your ethernet
 * interface.
 * Keeping the ethernet address of the MAC in this struct is not
 * necessary as it is already kept in the struct netif.
 * But this is only an example, anyway...
 */
struct ethernetif 
{
    struct eth_addr *ethaddr;
    // Add whatever per-interface state that is needed here.
    // 在这里添加网卡的私有数据,比如和网卡相关的信号量,互斥锁,
    // 网卡状态等等,这不是必须的
};

3个网卡相关的函数只要改动红色部分,需根据具体的网卡驱动函数改动

static void low_level_init(struct netif *netif)
{
    struct ethernetif *ethernetif = netif->state;

    /* set MAC hardware address length */
    netif->hwaddr_len = ETHARP_HWADDR_LEN;

    /* 设置MAC地址, 必须与网卡初始化的地址相同 */
    netif->hwaddr[0] = ;
    netif->hwaddr[1] = ;
    netif->hwaddr[2] = ;
    netif->hwaddr[3] = ;
    netif->hwaddr[4] = ;
    netif->hwaddr[5] = ;

    /* maximum transfer unit */
    netif->mtu = 1500;

    /* device capabilities */
    /* don't set NETIF_FLAG_ETHARP if this device is not an ethernet one */
    netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_LINK_UP;

    /* 在这里添加其他初始化代码(如真正的网卡初始化, phy初始化等) */ 
}

 

static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
    struct ethernetif *ethernetif = netif->state;
    struct pbuf *q;
 
    initiate transfer();

#if ETH_PAD_SIZE
    pbuf_header(p, -ETH_PAD_SIZE);   /* drop the padding word */
#endif
 
    for(q = p; q != NULL; q = q->next){
        /* Send the data from the pbuf to the interface, one pbuf at a
            time. The size of the data in each pbuf is kept in the ->len
            variable. */
        send data from(q->payload, q->len);
    }

    signal that packet should be sent();

#if ETH_PAD_SIZE
    pbuf_header(p, ETH_PAD_SIZE);   /* reclaim the padding word */
#endif

    LINK_STATS_INC(link.xmit);
 
    return ERR_OK;
}

static struct pbuf * low_level_input(struct netif *netif)
{
    struct ethernetif *ethernetif = netif->state;
    struct pbuf *p, *q;
    u16_t len;

    /* Obtain the size of the packet and put it into the "len" variable. */
    len = ;  // 获取将要接收的数据长度

#if ETH_PAD_SIZE
    len += ETH_PAD_SIZE; /* allow room for Ethernet padding */
#endif

    /* We allocate a pbuf chain of pbufs from the pool. */
    p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);

    if (p != NULL){ 
#if ETH_PAD_SIZE
        pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif

        /* We iterate over the pbuf chain until we have read the entire
         * packet into the pbuf. */
        for(q = p; q != NULL; q = q->next) {
            /* Read enough bytes to fill this pbuf in the chain. The
             * available data in the pbuf is given by the q->len
             * variable.
             * This does not necessarily have to be a memcpy, you can also 
             * preallocate pbufs for a DMA-enabled MAC and after receiving truncate 
             * it to the actually received size. In this case, ensure the tot_len 
             * member of the pbuf is the sum of the chained pbuf len members.
             */
            read data into(q->payload, q->len);
        }

        acknowledge that packet has been read();

#if ETH_PAD_SIZE
        pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif

        LINK_STATS_INC(link.recv); 
    } 
    else 
    {
        drop packet();
        LINK_STATS_INC(link.memerr);
        LINK_STATS_INC(link.drop);
    }

    return p;  
}

LwIP的使用

LwIP的初始化:

LwIP的初始化必须在RTOS启动之后才可以进行, 因为它的初始化代码使用了一些OS提供的功能!!!

初始化代码示例:

extern err_t ethernetif_init(struct netif *netif);
struct netif lpc1788_netif;
ip_addr_t e0ip, e0mask, e0gw;

/* tcpip_init使用的回调函数,用于判断tcpip_init初始化完成 */
static void tcpip_init_done(void *pdat)
{
    *(int *)pdat = 0;
}

void  ethernetif_input(struct netif *netif);
// 一直调用ethernetif_input函数,从网卡读取数据
static void lwip_read_task(void *netif)
{
    while(1)
    {
        ethernetif_input(netif);
    }
}
 
void init_lwip()
{
    struct netif *pnetif = NULL;
    int flag = 1;

    tcpip_init(tcpip_init_done, &flag);  // lwip协议栈的初始化
    while(flag);

    IP4_ADDR(&e0ip, 192,168,6,188);      // 设置网卡ip
    IP4_ADDR(&e0mask, 255,255,255,0);    // 设置子网掩码
    IP4_ADDR(&e0gw, 192,168,6,1);        // 设置网关

    //给lwip添加网卡
    pnetif = netif_add(&lpc1788_netif, &e0ip, &e0mask, &e0gw,
                       NULL, ethernetif_init, tcpip_input);
    netif_set_default(pnetif);     // 设置该网卡为默认网卡
    netif_set_up(&lpc1788_netif);  // 启动网卡,可以唤醒DHCP等服务

    // 创建一个任务。这个任务负责不停的调用ethernetif_input函数从网卡读取数据
    raw_task_create(&lwip_read_obj, (RAW_U8  *)"lwip_read", &lpc1788_netif,
                    CONFIG_RAW_PRIO_MAX - 25, 0,  lwip_read_stk, 
                    LWIP_READ_STK_SIZE ,  lwip_read_task, 1);  
}

你可能感兴趣的:(lwip移植)