HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split

1. 架构原理

HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split_第1张图片

1)StoreFile

保存实际数据的物理文件,StoreFile以HFile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。

2)MemStore

写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFile,每次刷写都会形成一个新的HFile。

3)WAL

由于数据要经MemStore排序后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Aheadlogfile的文件中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。

2. 写流程

HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split_第2张图片

写流程:

1)Client先访问zookeeper,获取hbase:meta表位于哪个RegionServer。

2)访问对应的RegionServer,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个RegionServer中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的metacache,方便下次访问。

3)与目标RegionServer进行通讯;

4)将数据顺序写入(追加)到WAL;

5)将数据写入对应的MemStore,数据会在MemStore进行排序;

6)向客户端发送ack;

7)等达到MemStore的刷写时机后,将数据刷写到HFile。

3. MemStoreFlush

HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split_第3张图片

MemStore刷写时机(要记住开始往memstore和停止mestore刷写的时机。):

  1. 单个Store来看 memstroe 的大小达到了hbase.hregion.memstore.flush.size(默认值128M),其所在region的所有memstore都会刷写。当memstore的大小达到了hbase.hregion.memstore.flush.size(默认值128M)* hbase.hregion.memstore.block.multiplier(默认值4)时,会阻止继续往该memstore写数据。

  2. 从regionerServer中来看regionserver中memstore的总大小达到java_heapsize*hbase.regionserver.global.memstore.size(默认值0.4)*hbase.regionserver.global.memstore.size.lower.limit(默认值0.95),region会按照其所有memstore的大小顺序(由大到小)依次进行刷写。直到regionserver中所有memstore的总大小减小到上述值以下。当 regionserver 中 memstore 的总大小达到 java_heapsize*hbase.regionserver.global.memstore.size(默认值0.4)时,会阻止继续往所有的memstore写数据。

  3. 到达自动刷写的时间,也会触发memstoreflush。自动刷新的时间间隔由该属性进行配置hbase.regionserver.optionalcacheflushinterval(默认1小时)。

  4. 当 WAL 文件的数量超过 hbase.regionserver.max.logs,region 会按照时间顺序依次进 行刷写,直到 WAL 文件数量减小到 hbase.regionserver.max.log 以下(该属性名已经废弃, 现无需手动设置,最大值为 32)。

4. 读流程

HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split_第4张图片

读流程 :发送Get请求,磁盘和内存一起读,为了加速磁盘的读速度,加了一个Block Cache

1)Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server。

2)访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey, 查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以 及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问。

3)与目标 Region Server 进行通讯;

4)分别在 Block Cache(读缓存),MemStore 和 Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。

5) 将从文件中查询到的数据块(Block,HFile 数据存储单元,默认大小为 64KB)缓存到 Block Cache。

6)将合并后的最终结果返回给客户端。

5. StoreFile Compaction

由于memstore每次刷写都会生成一个新的HFile,且同一个字段的不同版本(timestamp) 和不同类型(Put/Delete)有可能会分布在不同的 HFile 中,因此查询时需要遍历所有的 HFile。

为了减少 HFile 的个数,以及清理掉过期和删除的数据,会进行 StoreFile Compaction。 Compaction 分为两种,分别是 Minor Compaction 和 Major Compaction。Minor Compaction 会将临近的若干个较小的 HFile 合并成一个较大的 HFile,但不会清理过期和删除的数据。 Major Compaction 会将一个 Store 下的所有的 HFile 合并成一个大 HFile,并且会清理掉过期 和删除的数据。

HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split_第5张图片

6. Region Split

默认情况下,每个Table 起初只有一个 Region,随着数据的不断写入,Region 会自动进行拆分。刚拆分时,两个子 Region 都位于当前的 Region Server,但处于负载均衡的考虑, HMaster 有可能会将某个 Region 转移给其他的 Region Server。

Region Split 时机:

1.当1个region中的某个Store下所有StoreFile的总大小超过hbase.hregion.max.filesize, 该 Region 就会进行拆分(0.94 版本之前)。

2.当 1 个 region 中 的 某 个 Store 下所有 StoreFile 的 总 大 小 超 过 Min(R^2 * "hbase.hregion.memstore.flush.size",hbase.hregion.max.filesize"),该 Region 就会进行拆分,其 中 R 为当前 Region Server 中属于该 Table 的个数(0.94 版本之后)。

HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split_第6张图片

你可能感兴趣的:(大数据,hbase,数据库,大数据)