1345 Jump Game IV 跳跃游戏 IV
Description:
Given an array of integers arr, you are initially positioned at the first index of the array.
In one step you can jump from index i to index:
i + 1 where: i + 1 < arr.length.
i - 1 where: i - 1 >= 0.
j where: arr[i] == arr[j] and i != j.
Return the minimum number of steps to reach the last index of the array.
Notice that you can not jump outside of the array at any time.
Example:
Example 1:
Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
Output: 3
Explanation: You need three jumps from index 0 --> 4 --> 3 --> 9. Note that index 9 is the last index of the array.
Example 2:
Input: arr = [7]
Output: 0
Explanation: Start index is the last index. You do not need to jump.
Example 3:
Input: arr = [7,6,9,6,9,6,9,7]
Output: 1
Explanation: You can jump directly from index 0 to index 7 which is last index of the array.
Constraints:
1 <= arr.length <= 5 * 10^4
-10^8 <= arr[i] <= 10^8
题目描述:
给你一个整数数组 arr ,你一开始在数组的第一个元素处(下标为 0)。
每一步,你可以从下标 i 跳到下标 i + 1 、i - 1 或者 j :
i + 1 需满足:i + 1 < arr.length
i - 1 需满足:i - 1 >= 0
j 需满足:arr[i] == arr[j] 且 i != j
请你返回到达数组最后一个元素的下标处所需的 最少操作次数 。
注意:任何时候你都不能跳到数组外面。
Constraints:
示例 1:
输入:arr = [100,-23,-23,404,100,23,23,23,3,404]
输出:3
解释:那你需要跳跃 3 次,下标依次为 0 --> 4 --> 3 --> 9 。下标 9 为数组的最后一个元素的下标。
示例 2:
输入:arr = [7]
输出:0
解释:一开始就在最后一个元素处,所以你不需要跳跃。
示例 3:
输入:arr = [7,6,9,6,9,6,9,7]
输出:1
解释:你可以直接从下标 0 处跳到下标 7 处,也就是数组的最后一个元素处。
提示:
1 <= arr.length <= 5 * 10^4
-10^8 <= arr[i] <= 10^8
思路:
BFS
将相同值对应的下标加入哈希表, 连续多个相同值可以跳过, 因为一定用不上
将当前下标以及步数加入队列中, 遍历哈希表中的值, 这些值都可以一次到达
然后加入前一个下标和后一个下标
并用 visited 数组记录访问过的下标
时间复杂度为 O(n), 空间复杂度为 O(n)
代码:
C++:
class Solution {
public:
int minJumps(vector& arr) {
queue> q;
q.push(make_pair(0, 0));
unordered_set visited;
visited.insert(0);
unordered_map> m;
int n = arr.size();
for (int i = 0, last = -1; i < n; i++) {
while (i > 0 and i < n - 1 and last == arr[i] and last == arr[i + 1]) i++;
m[arr[i]].emplace_back(i);
last = arr[i];
}
while(!q.empty())
{
int cur = q.front().first, step = q.front().second;
q.pop();
if (cur == n - 1) return step;
++step;
if (m.count(arr[cur]))
{
for (const auto& neighbor : m[arr[cur]])
{
if (!visited.count(neighbor))
{
q.push(make_pair(neighbor, step));
visited.insert(neighbor);
}
}
m.erase(arr[cur]);
}
if (cur > 0 and !visited.count(cur - 1))
{
q.push(make_pair(cur - 1, step));
visited.insert(cur - 1);
}
if (cur < n - 1 and !visited.count(cur + 1))
{
q.push(make_pair(cur + 1, step));
visited.insert(cur + 1);
}
}
return -1;
}
};
Java:
class Solution {
public int minJumps(int[] arr) {
Queue queue = new LinkedList<>(){{ offer(new int[]{0, 0}); }};
Set visited = new HashSet<>(){{ add(0); }};
Map> map = new HashMap<>();
int n = arr.length;
for (int i = 0, last = -1; i < n; i++) {
while (i > 0 && i < n - 1 && last == arr[i] && last == arr[i + 1]) i++;
map.computeIfAbsent(arr[i], x -> new ArrayList<>()).add(i);
last = arr[i];
}
while(!queue.isEmpty()) {
int cur = queue.peek()[0], step = queue.poll()[1];
if (cur == n - 1) return step;
++step;
if (map.containsKey(arr[cur])) {
for (int neighbor : map.get(arr[cur])) {
if (!visited.contains(neighbor)) {
queue.offer(new int[] {neighbor, step});
visited.add(neighbor);
}
}
map.remove(arr[cur]);
}
if (cur > 0 && !visited.contains(cur - 1)) {
queue.offer(new int[]{cur - 1, step});
visited.add(cur - 1);
}
if (cur < n - 1 && !visited.contains(cur + 1)) {
queue.offer(new int[]{cur + 1, step});
visited.add(cur + 1);
}
}
return -1;
}
}
Python:
class Solution:
def minJumps(self, arr: List[int]) -> int:
next_jump, visited, q, n = defaultdict(list), {0}, deque([[0, 0]]), len(arr)
for i, a in enumerate(arr):
next_jump[a].append(i)
while q:
i, step = q.popleft()
if i == n - 1:
return step
v = arr[i]
step += 1
for next_i in next_jump[v]:
if next_i not in visited:
visited.add(next_i)
q.append([next_i, step])
del next_jump[v]
if i + 1 < n and (i + 1) not in visited:
visited.add(i + 1)
q.append([i+1, step])
if i - 1 > -1 and (i - 1) not in visited:
visited.add(i - 1)
q.append([i - 1, step])