Flink知识点

Flink

      • 1. 简单介绍一下Flink
      • 2. Flink的运行必须依赖Hadoop组件吗
      • 3. Flink集群运行时角色
      • 4. Flink相比Spark Streaming的区别
        • 4.1、什么是两阶段提交协议?
      • 5. Flink是如何保证Exactly-once语义的
      • 6. 介绍下Flink的容错机制(checkpoint)
      • 7. Flink checkpoint与Spark Streaming的有什么区别或优势吗
      • 8. 如果下级存储不支持事务,Flink怎么保证exactly-once
      • 9. Flink常用的算子有哪些
      • 10. Flink任务延时高,如何入手
      • 11. Flink是如何处理反压的
      • 12. 如何排查生产环境中的反压问题
        • 1. 反压出现的场景
        • 2. 反压监控方法
        • 3. flink反压的实现方式
        • 4. 反压问题定位和处理
      • 13. Flink中的状态存储
        • 1、内存型 StateBackend
        • 2、文件型 StateBackend
        • 3、RocksDBStateBackend
      • 14. Operator Chains(算子链)这个概念你了解吗
      • 15. Flink的内存管理是如何做的
      • 16. 如何处理生产环境中的数据倾斜问题
        • 1. flink数据倾斜的表现:
        • 2. 数据倾斜产生的原因:
        • 3. 解决问题的思路:
      • 17. Flink中的Time有哪几种
      • 18.Flink的window(窗口)类型
        • 18.1 什么是窗口
        • 18.2 Window类型
          • 滚动窗口(Tumbling Windows)
          • 滑动窗口(Sliding Windows)
          • 会话窗口(Session Windows)
      • 19. Flink对于迟到数据是怎么处理的
      • 20.Flink中window出现数据倾斜怎么解决
      • 21.Flink CEP编程中当状态没有到达的时候会将数据保存在哪里
      • 22. Flink设置并行度的方式
      • 23.Flink中Task如何做到数据交换
      • 24.Flink的内存管理是如何做的
      • 25.介绍下Flink的序列化
      • 26.Flink海量数据高效去重
      • 27.Flink SQL的是如何实现的

1. 简单介绍一下Flink

Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。

Flink 是大数据领域的分布式实时和离线计算引擎,其程序的基础构建模块是流(Streams)和转换(Transformations),每一个数据流起始于一个或多个 Source,并终止于一个或多个 Sink,数据流类似于有向无环图(DAG)。

Flink 提供了诸多高抽象层的 API 以便用户编写分布式任务:DataSet API、DataStream API、Table API

flink特性

高效的状态管理,Flink自带的StateBackend可以很好的存储中间状态信息;
丰富的窗口支持,Flink支持包含滚动窗口、滑动窗口及其他窗口;
多种时间语义,Flink支持EventTime、ProcessingTime和IngestionTime;
不同级别的容错,Flink支持AtLeastOnce或ExactlyOnce容错级别。

2. Flink的运行必须依赖Hadoop组件吗

Flink可以完全独立于Hadoop,在不依赖Hadoop组件下运行。但是做为大数据的基础设施,Hadoop体系是任何大数据框架都绕不过去的。Flink可以集成众多 Hadooop 组件,例如Yarn、Hbase、HDFS等等。例如,Flink可以和Yarn集成做资源调度,也可以读写HDFS,或者利用HDFS做检查点。

3. Flink集群运行时角色

Flink 运行时由两种类型的进程组成:一个 JobManager 和一个或者多个 TaskManager
Flink知识点_第1张图片

  1. Client是Flink程序提交的客户端,当用户提交一个Flink程序时,会首先创建一个Client,该Client首先会对用户提交的Flink程序进行预处理,并提交到Flink集群中处理,所以Client需要从用户提交的Flink程序配置中获取JobManager的地址,并建立到JobManager的连接,将Flink Job提交给JobManager

  2. JobManager:

JobManager 具有许多与协调 Flink 应用程序的分布式执行有关的职责:它决定何时调度下一个 task(或一组 task)、对完成的 task 或执行失败做出反应、协调 checkpoint、并且协调从失败中恢复等等。这个进程由三个不同的组件组成:

  • ResourceManager
    ResourceManager 负责 Flink 集群中的资源提供、回收、分配,管理 task slots。
  • Dispatcher
    Dispatcher 提供了一个 REST 接口,用来提交 Flink 应用程序执行,并为每个提交的作业启动一个新的 JobMaster。它还运行 Flink WebUI 用来提供作业执行信息。
  • JobMaster
    JobMaster 负责管理单个JobGraph的执行。Flink 集群中可以同时运行多个作业,每个作业都有自己的 JobMaster。
  1. TaskManagers:
  • TaskManager(也称为 worker)执行作业流的 task,并且缓存和交换数据流。
    必须始终至少有一个 TaskManager。在 TaskManager 中资源调度的最小单位是 task slot。TaskManager 中 task slot 的数量表示并发处理 task 的数量。请注意一个 task slot 中可以执行多个算子。

4. Flink相比Spark Streaming的区别

Flink 是标准的实时处理引擎,基于事件驱动;而 Spark Streaming 是微批(Micro-Batch)的模型

  1. 架构模型

Spark Streaming 在运行时的主要角色包括:Master、Worker、Driver、Executor,
Flink 在运行时主要包含:Jobmanager、Taskmanager 和 Slot。

  1. 任务调度

Spark Streaming 连续不断的生成微小的数据批次,构建有向无环图 DAG,Spark Streaming 会依次创建 DStreamGraph、JobGenerator、JobScheduler。

Flink 根据用户提交的代码生成 StreamGraph,经过优化生成 JobGraph,然后提交给 JobManager 进行处理,JobManager 会根据 JobGraph 生成 ExecutionGraph,ExecutionGraph 是 Flink 调度最核心的数据结构,JobManager 根据 ExecutionGraph 对 Job 进行调度。

  1. 时间机制

Spark Streaming 支持的时间机制有限,只支持处理时间。
Flink 支持了流处理程序在时间上的三个定义:事件时间 EventTime、摄入时间 IngestionTime 、处理时间 ProcessingTime。同时也支持 watermark 机制来处理滞后数据。
Flink知识点_第2张图片

  1. 容错机制

对于 Spark Streaming 任务,我们可以设置 checkpoint,然后假如发生故障并重启,我们可以从上次 checkpoint 之处恢复,但是这个行为只能使得数据不丢失,可能会重复处理,不能做到恰一次处理语义。

Flink 则使用两阶段提交协议来解决这个问题。
两阶段提交协议详解:八张图搞懂Flink的Exactly-once

4.1、什么是两阶段提交协议?

两阶段提交协议(Two -Phase Commit,2PC)是解决分布式事务问题最常用的方法,它可以保证在分布式事务中,要么所有参与进程都提交事务,要么都取消,即实现ACID中的 A(原子性)。

两阶段提交协议中 有两个重要角色,协调者(Coordinator)和 参与者(Participant),其中协调者只有一个,起到分布式事务的协调管理作用,参与者有多个。

两阶段提交阶段分为两个阶段:投票阶段(Voting)和 提交阶段(Commit)。
投票阶段:
(1)协调者向所有参与者发送 prepare 请求和事务内容,询问是否可以准备事务提交,等待参与者的相应。

(2)参与者执行事务中包含的操作,并记录 undo 日志(用于回滚)和 redo 日志(用于重放),但不真正提交。

(3)参与者向协调者返回事务操作的执行结果,执行成功返回yes,失败返回no。
提交阶段:

分为成功与失败两种情况。

  1. 若所有参与者都返回 yes,说明事务可以提交:
  • 协调者向所有参与者发送 commit 请求。
  • 参与者收到 commit 请求后,将事务真正地提交上去,并释放占用的事务资源,并向协调者返回 ack 。
  • 协调者收到所有参与者的 ack 消息,事务成功完成,如下图:
  1. 若有参与者返回 no 或者超时未返回,说明事务中断,需要回滚:
  • 协调者向所有参与者发送rollback请求。
  • 参与者收到rollback请求后,根据undo日志回滚到事务执行前的状态,释放占用的事务资源,并向协调者返回ack。
  • 协调者收到所有参与者的ack消息,事务回滚完成

5. Flink是如何保证Exactly-once语义的

  1. 事务性写入支持:Flink提供了可以保证事务性写入的数据源连接器,例如Flink Kafka Connector、Flink JDBC Connector等。这些连接器与外部系统进行交互时,使用了支持事务的机制,确保将结果写入外部系统的操作与Flink的检查点(Checkpoint)和恢复机制保持一致。

  2. 一致性检查点机制:Flink的一致性检查点机制用于捕获作业的状态和数据,并将其存储在可靠的持久性存储中,例如分布式文件系统或对象存储。Flink会周期性地生成检查点,并将流式处理应用程序的状态快照写入检查点存储。这样,即使在发生故障时,应用程序也可以从最近的检查点恢复并确保精确一次性语义。

  3. 状态一致性保证:Flink的状态管理机制确保了状态的一致性。在检查点生成期间,Flink会将所有相关的状态(例如算子状态、键值状态、窗口状态等)进行快照,并与检查点一起存储。在发生故障时,Flink可以使用这些快照来恢复状态,以确保在恢复后的计算过程中保持一致性。

  4. 精确一次性的事件时间处理:Flink的事件时间处理机制中,水位线(Watermark)用于指示事件时间的进展。Flink确保仅在水位线到达或超过特定时间戳的事件时才进行处理,从而避免重复处理相同的事件。这确保了在事件时间处理中的精确一次性语义。

综上所述,Flink通过事务性写入支持、一致性检查点机制、状态一致性保证和精确一次性的事件时间处理,来保证应用程序的精确一次性语义。这些机制确保了在发生故障或故障恢复时,Flink应用程序可以从最近的一致性检查点恢复,并在保持状态一致的情况下继续处理数据,从而实现精确一次性语义。

6. 介绍下Flink的容错机制(checkpoint)

Checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保证应用流图状态的一致性。Flink的Checkpoint机制原理来自“Chandy-Lamport algorithm”算法。

每个需要Checkpoint的应用在启动时,Flink的JobManager为其创建一个 CheckpointCoordinator(检查点协调器),CheckpointCoordinator全权负责本应用的快照制作。

CheckpointCoordinator(检查点协调器),CheckpointCoordinator全权负责本应用的快照制作。
Flink知识点_第3张图片

  1. CheckpointCoordinator(检查点协调器) 周期性的向该流应用的所有source算子发送 barrier(屏障)。

  2. 当某个source算子收到一个barrier时,便暂停数据处理过程,然后将自己的当前状态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告自己快照制作情况,同时向自身所有下游算子广播该barrier,恢复数据处理

  3. 下游算子收到barrier之后,会暂停自己的数据处理过程,然后将自身的相关状态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告自身快照情况,同时向自身所有下游算子广播该barrier,恢复数据处理。

  4. 每个算子按照步骤3不断制作快照并向下游广播,直到最后barrier传递到sink算子,快照制作完成。

  5. 当CheckpointCoordinator收到所有算子的报告之后,认为该周期的快照制作成功; 否则,如果在规定的时间内没有收到所有算子的报告,则认为本周期快照制作失败。

文章推荐:

Flink可靠性的基石-checkpoint机制详细解析

7. Flink checkpoint与Spark Streaming的有什么区别或优势吗

spark streaming 的 checkpoint 仅仅是针对 driver 的故障恢复做了数据和元数据的 checkpoint。而 flink 的 checkpoint 机制 要复杂了很多,它采用的是轻量级的分布式快照,实现了每个算子的快照,及流动中的数据的快照。

8. 如果下级存储不支持事务,Flink怎么保证exactly-once

  • 端到端的exactly-once对sink要求比较高,具体实现主要有幂等写入和事务性写入两种方式。

  • 幂等写入的场景依赖于业务逻辑,更常见的是用事务性写入。而事务性写入又有预写日志(WAL)和两阶段提交(2PC)两种方式。

  • 如果外部系统不支持事务,那么可以用预写日志的方式,把结果数据先当成状态保存,然后在收到 checkpoint 完成的通知时,一次性写入 sink 系统。

9. Flink常用的算子有哪些

分两部分:

  1. 数据读取,这是Flink流计算应用的起点,常用算子有:
  • 从内存读:fromElements

  • 从文件读:readTextFile

  • Socket 接入 :socketTextStream

  • 自定义读取:createInput

  1. 处理数据的算子,常用的算子包括:Map(单输入单输出)、FlatMap(单输入、多输出)、Filter(过滤)、KeyBy(分组)、Reduce(聚合)、Window(窗口)、Connect(连接)、Split(分割)等。
    推荐阅读:一文学完Flink流计算常用算子(Flink算子大全)

10. Flink任务延时高,如何入手

在 Flink 的后台任务管理中,我们可以看到 Flink 的哪个算子和 task 出现了反压。最主要的手段是资源调优和算子调优。资源调优即是对作业中的 Operator 的并发数(parallelism)、CPU(core)、堆内存(heap_memory)等参数进行调优。作业参数调优包括:并行度的设置,State 的设置,checkpoint 的设置。

11. Flink是如何处理反压的

Flink 内部是基于 producer-consumer 模型来进行消息传递的,Flink的反压设计也是基于这个模型。Flink 使用了高效有界的分布式阻塞队列,就像 Java 通用的阻塞队列(BlockingQueue)一样。下游消费者消费变慢,上游就会受到阻塞。

12. 如何排查生产环境中的反压问题

1. 反压出现的场景

反压经常出现在促销、热门活动等场景。短时间内流量陡增造成数据的堆积或者消费速度变慢。

它们有一个共同的特点:数据的消费速度小于数据的生产速度。

2. 反压监控方法

通过Flink Web UI发现反压问题。

Flink 的 TaskManager 会每隔 50 ms 触发一次反压状态监测,共监测 100 次,并将计算结果反馈给 JobManager,最后由 JobManager 进行计算反压的比例,然后进行展示。

这个比例展示逻辑如下:

OK: 0 <= Ratio <= 0.10,表示状态良好正;

LOW: 0.10 < Ratio <= 0.5,表示有待观察;

HIGH: 0.5 < Ratio <= 1,表示要处理了(增加并行度/subTask/检查是否有数据倾斜/增加内存)。

0.01,代表100次中有一次阻塞在内部调用。

3. flink反压的实现方式

Flink任务的组成由基本的“流”和“算子”构成,“流”中的数据在“算子”间进行计算和转换时,会被放入分布式的阻塞队列中。当消费者的阻塞队列满时,则会降低生产者的数据生产速度

4. 反压问题定位和处理

Flink会因为数据堆积和处理速度变慢导致checkpoint超时,而checkpoint是Flink保证数据一致性的关键所在,最终会导致数据的不一致发生。

数据倾斜:可以在 Flink 的后台管理页面看到每个 Task 处理数据的大小。当数据倾斜出现时,通常是简单地使用类似 KeyBy 等分组聚合函数导致的,需要用户将热点 Key 进行预处理,降低或者消除热点 Key 的影。

GC:不合理的设置 TaskManager 的垃圾回收参数会导致严重的 GC 问题,我们可以通过 -XX:+PrintGCDetails 参数查看 GC 的日志。

代码本身:开发者错误地使用 Flink 算子,没有深入了解算子的实现机制导致性能问题。我们可以通过查看运行机器节点的 CPU 和内存情况定位问题。

13. Flink中的状态存储

  • 在Flink中, 状态存储被叫做 StateBackend , 它具备两种能力:

(1)在计算过程中提供访问State能力,开发者在编写业务逻辑中能够使用StateBackend的接口读写数据。

(2)能够将State持久化到外部存储,提供容错能力。

  • Flink状态提供三种存储方式:

(1)内存:MemoryStateBackend,适用于验证、测试、不推荐生产使用。
(2)文件:FSStateBackend,适用于长周期大规模的数据。
(3)RocksDB : RocksDBStateBackend,适用于长周期大规模的数据。

上面提到的 StateBackend是面向用户的,在Flink内部3种 State 的关系如下图:
Flink知识点_第4张图片

1、内存型 StateBackend
  • MemoryStateBackend,运行时所需的State数据全部保存在 TaskManager JVM堆上内存中, KV类型的State、窗口算子的State 使用HashTable 来保存数据、触发器等。执行检查点的时候,会把 State 的快照数据保存到JobManager进程的内存中。
  • MemoryStateBackend 可以使用异步的方式进行快照,(也可以同步),推荐异步,避免阻塞算子处理数据。

MemoryStateBackend 可以使用异步的方式进行快照,(也可以同步),推荐异步,避免阻塞算子处理数据。

基于内存的 Stateßackend 在生产环境下不建议使用,可以在本地开发调试测试 。
注意点如下 :

  1. State 存储在 JobManager 的内存中.受限于 JobManager的内存大小。
  2. 每个 State默认5MB,可通过 MemoryStateBackend 构造函数调整
  3. 每个 Stale 不能超过 Akka Frame 大小。
2、文件型 StateBackend

FSStateBackend,运行时所需的State数据全部保存在 TaskManager 的内存中, 执行检查点的时候,会把 State 的快照数据保存到配置的文件系统中

可以是分布式或者本地文件系统,路径如:
HDFS路径:“hdfs://namenode:40010/flink/checkpoints”
本地路径:“file:///data/flink/checkpoints”。

FSStateBackend 适用于处理大状态、长窗口、或者大键值状态的有状态处理任务。

注意点如下 :

  1. State 数据首先被存在 TaskManager 的内存中。
  2. State大小不能超过TM内存。
  3. TM异步将State数据写入外部存储。

MemoryStateBackend 和FSStateBackend 都依赖于HeapKeyedStateBackend,HeapKeyedStateBackend 使用 State存储数据。

3、RocksDBStateBackend
  • RocksDBStateBackend 跟内存型和文件型都不同 。
  • RocksDBStateBackend 使用嵌入式的本地数据库 RocksDB 将流计算数据状态存储在本地磁盘中,不会受限于TaskManager 的内存大小,在执行检查点的时候,再将整个 RocksDB 中保存的State数据全量或者增量持久化到配置的文件系统中,在 JobManager 内存中会存储少量的检查点元数据。RocksDB克服了State受内存限制的问题,同时又能够持久化到远端文件系统中,比较适合在生产中使用。

缺点:

  • RocksDBStateBackend 相比基于内存的StateBackend,访问State的成本高很多,可能导致数据流的吞吐量剧烈下降,甚至可能降低为原来的 1/10。

适用场景

1)最适合用于处理大状态、长窗口,或大键值状态的有状态处理任务。
2)RocksDBStateBackend 非常适合用于高可用方案。
3) RocksDBStateBackend 是目前唯一支持增量检查点的后端。 增量检查点非常适用于超 大状态的场景。

注意点

1)总 State 大小仅限于磁盘大小,不受内存限制
2)RocksDBStateBackend 也需要配置外部文件系统,集中保存State 。
3)RocksDB的 JNI API 基于 byte 数组,单 key 和单 Value 的大小不能超过 8 字节
4)对于使用具有合并操作状态的应用程序,如ListState ,随着时间可能会累积到超过 2*31次方字节大小,这将会导致在接下来的查询中失败。

14. Operator Chains(算子链)这个概念你了解吗

为了更高效地分布式执行,Flink 会尽可能地将 operator 的 subtask 链接(chain)在一起形成 task。每个 task 在一个线程中执行。将 operators 链接成 task 是非常有效的优化:它能减少线程之间的切换,减少消息的序列化/反序列化,减少数据在缓冲区的交换,减少了延迟的同时提高整体的吞吐量。这就是我们所说的算子链。

15. Flink的内存管理是如何做的

Flink 并不是将大量对象存在堆上,而是将对象都序列化到一个预分配的内存块上。此外,Flink大量的使用了堆外内存。如果需要处理的数据超出了内存限制,则会将部分数据存储到硬盘上。Flink 为了直接操作二进制数据实现了自己的序列化框架。

16. 如何处理生产环境中的数据倾斜问题

1. flink数据倾斜的表现:

任务节点频繁出现反压,增加并行度也不能解决问题;

部分节点出现OOM异常,是因为大量的数据集中在某个节点上,导致该节点内存被爆,任务失败重启。

2. 数据倾斜产生的原因:

业务上有严重的数据热点,比如滴滴打车的订单数据中北京、上海等几个城市的订单量远远超过其他地区;

技术上大量使用了 KeyBy、GroupBy 等操作,错误的使用了分组 Key,人为产生数据热点。

3. 解决问题的思路:

业务上要尽量避免热点 key 的设计,例如我们可以把北京、上海等热点城市分成不同的区域,并进行单独处理;

技术上出现热点时,要调整方案打散原来的 key,避免直接聚合;此外 Flink 还提供了大量的功能可以避免数据倾斜。

17. Flink中的Time有哪几种

Flink中的时间有三种类型,如下图所示:

  • Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。

  • Ingestion Time:是数据进入Flink的时间。

  • Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。

例如,一条日志进入Flink的时间为2021-01-22 10:00:00.123,到达Window的系统时间为2021-01-22 10:00:01.234,日志的内容如下:2021-01-06 18:37:15.624 INFO Fail over to rm2

对于业务来说,要统计1min内的故障日志个数,哪个时间是最有意义的?—— eventTime,因为我们要根据日志的生成时间进行统计。

18.Flink的window(窗口)类型

18.1 什么是窗口
  1. Window,即窗口,我们前面一直提到的边界就是这里的Window(窗口)。
  2. 官方解释:流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而window是一种切割无限数据为有限块进行处理的手段。
    所以Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作。
18.2 Window类型

本文刚开始提到,划分窗口就两种方式:

  1. 根据时间进行截取(time-driven-window),比如每1分钟统计一次或每10分钟统计一次。

  2. 根据数据进行截取(data-driven-window),比如每5个数据统计一次或每50个数据统计一次。
    Flink知识点_第5张图片
    对于TimeWindow(根据时间划分窗口), 可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。

滚动窗口(Tumbling Windows)
  • 将数据依据固定的窗口长度对数据进行切片。

  • 特点:时间对齐,窗口长度固定,没有重叠。

  • 滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。

  • 例如:如果你指定了一个5分钟大小的滚动窗口

  • 适用场景:适合做BI统计等(做每个时间段的聚合计算)。

滑动窗口(Sliding Windows)
  • 滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成。
  • 特点:时间对齐,窗口长度固定,有重叠。
  • 滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。
  • 例如,你有10分钟的窗口和5分钟的滑动,那么每个窗口中5分钟的窗口里包含着上个10分钟产生的数据,
  • 适用场景:对最近一个时间段内的统计(求某接口最近5min的失败率来决定是否要报警)。
会话窗口(Session Windows)
  • 由一系列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。
  • 特点:时间无对齐。
  • session窗口分配器通过session活动来对元素进行分组,session窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭。一个session窗口通过一个session间隔来配置,这个session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的session窗口中去。

19. Flink对于迟到数据是怎么处理的

Flink中 WaterMark 和 Window 机制解决了流式数据的乱序问题,对于因为延迟而顺序有误的数据,可以根据eventTime进行业务处理,对于延迟的数据Flink也有自己的解决办法,主要的办法是给定一个允许延迟的时间,在该时间范围内仍可以接受处理延迟数据

设置允许延迟的时间是通过allowedLateness(lateness: Time)设置

保存延迟数据则是通过sideOutputLateData(outputTag: OutputTag[T])保存

获取延迟数据是通过DataStream.getSideOutput(tag: OutputTag[X])获取

文章推荐: Flink 中极其重要的 Time 与 Window 详细解析

20.Flink中window出现数据倾斜怎么解决

window 产生数据倾斜指的是数据在不同的窗口内堆积的数据量相差过多。本质上产生这种情况的原因是数据源头发送的数据量速度不同导致的。出现这种情况一般通过两种方式来解决:

  • 在数据进入窗口前做预聚合

  • 重新设计窗口聚合的 key

21.Flink CEP编程中当状态没有到达的时候会将数据保存在哪里

在流式处理中,CEP 当然是要支持 EventTime 的,那么相对应的也要支持数据的迟到现象,也就是watermark的处理逻辑。CEP对未匹配成功的事件序列的处理,和迟到数据是类似的。在 Flink CEP的处理逻辑中,状态没有满足的和迟到的数据,都会存储在一个Map数据结构中,也就是说,如果我们限定判断事件序列的时长为5分钟,那么内存中就会存储5分钟的数据,这在我看来,也是对内存的极大损伤之一。

推荐阅读:一文学会Flink CEP

22. Flink设置并行度的方式

在实际生产环境中可以从四个不同层面设置并行度:

  1. 操作算子层面(Operator Level)
.map(new RollingAdditionMapper()).setParallelism(10) //将操作算子设置并行度
  1. 执行环境层面(Execution Environment Level)
$FLINK_HOME/bin/flink 的-p参数修改并行度
  1. 客户端层面(Client Level)
env.setParallelism(10)
  1. 系统层面(System Level)
    全局配置在flink-conf.yaml文件中,parallelism.default,默认是1:可以设置默认值大一点
    需要注意的优先级:算子层面>环境层面>客户端层面>系统层面。

23.Flink中Task如何做到数据交换

在一个 Flink Job 中,数据需要在不同的 task 中进行交换,整个数据交换是有 TaskManager 负责的,TaskManager 的网络组件首先从缓冲 buffer 中收集 records,然后再发送。Records 并不是一个一个被发送的,是积累一个批次再发送,batch 技术可以更加高效的利用网络资源。

24.Flink的内存管理是如何做的

Flink 并不是将大量对象存在堆上,而是将对象都序列化到一个预分配的内存块上。此外,Flink大量的使用了堆外内存。如果需要处理的数据超出了内存限制,则会将部分数据存储到硬盘上。Flink 为了直接操作二进制数据实现了自己的序列化框架。

25.介绍下Flink的序列化

Flink 摒弃了 Java 原生的序列化方法,以独特的方式处理数据类型和序列化,包含自己的类型描述符,泛型类型提取和类型序列化框架。

TypeInformation 是所有类型描述符的基类。它揭示了该类型的一些基本属性,并且可以生成序列化器。
TypeInformation 支持以下几种类型:

  • BasicTypeInfo: 任意 Java 基本类型或 String 类型

  • BasicArrayTypeInfo: 任意 Java 基本类型数组或 String 数组

  • WritableTypeInfo: 任意 Hadoop Writable 接口的实现类

  • TupleTypeInfo: 任意的 Flink Tuple 类型(支持 Tuple1 to Tuple25)。Flink tuples 是固定长度固定类型的 Java Tuple 实现

  • CaseClassTypeInfo: 任意的 Scala CaseClass(包括 Scala tuples)

  • PojoTypeInfo: 任意的 POJO (Java or Scala),例如,Java 对象的所有成员变量,要么是 public 修饰符定义,要么有 getter/setter 方法

  • GenericTypeInfo: 任意无法匹配之前几种类型的类

26.Flink海量数据高效去重

  1. 基于状态后端。

  2. 基于HyperLogLog:不是精准的去重。

  3. 基于布隆过滤器(BloomFilter);快速判断一个key是否存在于某容器,不存在就直接返回。

  4. 基于BitMap;用一个bit位来标记某个元素对应的Value,而Key即是该元素。由于采用了Bit为单位来存储数据,因此可以大大节省存储空间。

  5. 基于外部数据库;选择使用Redis或者HBase存储数据,我们只需要设计好存储的Key即可,不需要关心Flink任务重启造成的状态丢失问题。

27.Flink SQL的是如何实现的

Flink知识点_第6张图片
构建抽象语法树的事情交给了 Calcite 去做。SQL query 会经过 Calcite 解析器转变成 SQL 节点树,通过验证后构建成 Calcite 的抽象语法树(也就是图中的 Logical Plan)。另一边,Table API 上的调用会构建成 Table API 的抽象语法树,并通过 Calcite 提供的 RelBuilder 转变成 Calcite 的抽象语法树。然后依次被转换成逻辑执行计划和物理执行计划。

在提交任务后会分发到各个 TaskManager 中运行,在运行时会使用 Janino 编译器编译代码后运行。

你可能感兴趣的:(大数据,flink)