- [ Linux 命令基础 ] Linux 命令大全-命令前置知识-系统管理-文件和目录管理-文本处理命令-网络管理命令-权限和用户管理命令-磁盘管理命令
_PowerShell
shell脚本入门到精通Linux命令大全linux命令前置知识linux系统管理linux文件和目录管理linux文本处理命令linux网络管理命令linux权限和用户管理命令
博主介绍博主介绍:大家好,我是_PowerShell,很高兴认识大家~✨主攻领域:【渗透领域】【数据通信】【通讯安全】【web安全】【面试分析】点赞➕评论➕收藏==养成习惯(一键三连)欢迎关注一起学习一起讨论⭐️一起进步文末有彩蛋作者水平有限,欢迎各位大佬指点,相互学习进步!我们搞网络安全需要经常用到linux命令,比用拿到linux的shell,需要使用linux命令。再比如sh脚本,我们经常
- Python连接SQL SEVER数据库全流程
m0_74823131
数据库pythonsql
背景介绍在数据分析领域,经常需要从数据库中获取数据进行分析和处理。而SQLServer是一种常用的关系型数据库管理系统,因此学习如何使用Python连接SQLServer数据库并获取数据是非常有用的。以下是Python使用pymssql连接SQLServer数据库的全流程:安装pymssql库本地账号设置脚本连接数据导入函数实现一、安装pymssqlpymssql是Python连接SQLServe
- 一切靠抢的带抢的都是非常赚钱的,比如抢号抢票抢购等
小黄人软件
经验分享
“带抢”的东西通常意味着供需极度不平衡,信息不对称,或者时间、资源有限,因此具备高利润空间。除了抢号之外,以下这些领域也符合这个特点:1.抢购类抢票:包括演唱会、热门球赛、春运火车票、热门景区门票(如故宫)等,提供代抢服务或者软件。抢鞋、抢限量潮牌:如耐克SNKRS、Supreme等品牌的限量款,通过Bot代抢再高价转卖。抢游戏账号/虚拟物品:抢注游戏ID、游戏道具、限量皮肤,再转卖给需求方。抢新
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- Java后端开发技术详解
小二爱编程·
java开发语言
Java作为一门成熟的编程语言,已广泛应用于后端开发领域。其强大的生态系统和广泛的支持库使得Java成为许多企业和开发者的首选后端开发语言。随着云计算、微服务架构和大数据技术的兴起,Java后端开发的技术栈也不断演进。本文将详细介绍Java后端开发的核心技术,包括Java基础、常见框架、数据库操作、缓存技术、异步编程等。1.Java基础:理解面向对象的编程Java是一种面向对象的编程语言,面向对象
- 基于springboot的社区团购系统设计
Olivia-gogogo
springboot后端java
一、引言在当今数字化时代,信息技术正以前所未有的速度渗透到社会的各个领域,深刻地改变着人们的生活和工作方式。教育领域也不例外,随着高等教育的普及和招生规模的不断扩大,大学生入学审核工作面临着越来越大的挑战。传统的人工入学审核方式已难以满足现代教育管理的需求,暴露出诸多弊端。传统人工入学审核方式效率低下。在每年的招生季,高校招生工作人员需要面对大量的入学申请材料,这些材料不仅数量庞大,而且种类繁多,
- Midscene.js自然语言驱动的网页自动化全指南
Hello.Reader
前端技术人工智能javascript自动化开发语言
一、概述网页自动化在数据抓取、UI测试和业务流程优化中发挥着重要作用。然而,传统工具如Selenium和Puppeteer要求用户具备编程技能,编写复杂的选择器和脚本维护成本高昂。Midscene.js通过自然语言接口革新了这一领域,用户只需描述任务(如“点击登录按钮”或“提取产品价格”),AI即可自动执行,大幅降低技术门槛。Midscene.js由web-infra-dev团队开发,开源于Git
- 使用Jupyter Notebook进行深度学习编程 - 深度学习教程
shandianfk_com
ChatGPTAIjupyter深度学习ide
大家好,今天我们要聊聊如何使用JupyterNotebook进行深度学习编程。深度学习是人工智能领域中的一项重要技术,通过模仿人脑神经网络的方式进行学习和分析。JupyterNotebook作为一个强大的工具,可以帮助我们轻松地进行深度学习编程,尤其适合初学者和研究人员。本文将带领大家一步步了解如何在JupyterNotebook中开展深度学习项目。一、什么是JupyterNotebook?Jup
- **[特殊字符] 计算机领域创作挑战赛,邀你共绘文字海洋!**
爱编程的Loren
活动文章活动文章
亲爱的大学博主们: 大家好! 你是否热爱写作,渴望在文字的海洋中遨游,展示自己的创作才华?你是否对计算机领域充满热情,希望将你的知识和见解分享给更多人?如果你对这两点都给出了肯定的答案,那么这个创作活动就是为你量身定制的! **创作挑战赛火热开启** 我们诚挚地邀请你参加为期14天的创作挑战赛!这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习deepseek机器学习算法
大语言模型微调和大语言模型应用的区别?关键要点微调大型语言模型(LLM)是调整预训练模型以适应特定任务或领域的过程,研究表明这能显著提升性能。大型语言模型应用是指将LLM用于实际问题解决或任务执行,如聊天机器人或文本生成。微调和应用的不同在于:微调是准备阶段,应用是最终使用;使用微调模型通常在特定领域表现更好,而预训练模型更适合通用任务。什么是微调大型语言模型?微调大型语言模型是指取一个已经预训练
- 英伟达常用GPU参数速查表,含B300.....
Ai17316391579
深度学习服务器人工智能机器学习服务器电脑计算机视觉深度学习神经网络
英伟达常用GPU参数速查表,收藏备用:含RTX5090、RTX4090D、L40、L20、A100、A800、H100、H800、H20、H200、B200、B300、GB300.....专注于高性能计算人工智能细分领域kyfwq001#5090##4090##英伟达“新核弹”B200发布##英伟达##英伟达B300##GPU##服务器##显卡##英伟达H800/A800芯片将禁售#
- 区块链在医疗数据共享中的应用:解锁安全与透明的新维度
Echo_Wish
人工智能前沿技术区块链安全
区块链在医疗数据共享中的应用:解锁安全与透明的新维度近年来,区块链技术在金融领域取得了显著的突破,然而,它的潜力不仅仅局限于数字货币和支付领域。随着医疗数据的数字化和信息化程度不断提升,区块链技术在医疗数据共享中的应用正逐渐成为一个热门话题。区块链以其去中心化、不可篡改、透明且高效的特点,为医疗行业的数据管理提供了全新的解决方案,尤其是在患者隐私保护、数据共享以及医疗服务的透明度方面。那么,区块链
- Kubernetes配置全解析:从小白到高手的进阶秘籍
ivwdcwso
操作系统与云原生kubernetes容器云原生k8s配置
导语在Kubernetes(K8s)的世界里,合理且精准的配置是释放其强大功能的关键。无论是搭建集群、部署应用,还是优化资源利用,配置都贯穿始终。然而,K8s配置涉及众多参数与组件,错综复杂,令不少初学者望而却步。本文将带你一步步深入K8s配置领域,从小白进阶为配置高手,轻松驾驭K8s集群。一、Kubernetes集群配置Master节点配置kube-api-server:这是K8s集群的“门面”
- GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
蚝油菜花
每日AI项目与应用实例开源人工智能
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->丰富的AI工具库->每日更新->尽在微信公众号->搜一搜:蚝油菜花️“声优连夜转行送外卖!OpenAI新模型每分钟语音成本仅9分钱”大家好,我是蚝油菜花。当同行还在用机械音合成器折磨听众时,这个AI怪物已
- Dify-Plus:企业级AI管理核弹!开源方案吊打SaaS,额度+密钥+鉴权系统全面集成
蚝油菜花
每日AI项目与应用实例人工智能开源开源人工智能
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->丰富的AI工具库->每日更新->尽在微信公众号->搜一搜:蚝油菜花“CTO集体失眠!这个开源项目让企业AI管理进入上帝模式”大家好,我是蚝油菜花。当同行还在为API调用次数和预算超支扯皮时,这个国产神器已
- 05-项目为什么总是延期
javascript
当前一个项目在开发新需求的时候,我们制定的计划只是列出功能开发的部分,并不是整个项目全部的周期,这就造成项目从开始到能够正式上线,时间规划是不全面、不清晰的(只是代码编写部分有时间计划),项目负责人基本上只会关注功能开发的部分,至于内部验收、Bug修复、测试周期和版本发布时间等等环节,有点听天由命,完全是看前一个环节进展的情况而定——前一个环节进展顺利,那就到下一个环节,进展不顺利就变更下个环节的
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- dv-scroll-board 鼠标移入单元格显示单元格所有数据
mengfei-super
计算机外设前端vue.js
前言:在使用大屏组件库data-v开发大屏驾驶舱系统,dv-scroll-board实现表格数据滚动的效果,但是某一列数据较多,需求提出:鼠标移上去要显示对应的问题,完全展示出来。奈何以前没有搞过这个问题,随即立马找向百度麻麻!实现效果及方法如下:{{dvTextName}}exportdefault{data(){return{dvText:{keyX:"15px",keyY:"0px",},d
- mysql数据库学号数据类型_MySQL数据库学习笔记(二)----MySQL数据类型
艾萨里昂之光
mysql数据库学号数据类型
【正文】上一章节中,我们学习了MySQL软件的安装,既然软件都装好了,现在就正式开始MySQL的基础知识的学习吧,即使是零基础,也要一步一个脚印。恩,首先要学习的就是MySQL的数据类型。一、数据类型:1、整型(xxxint)2、浮点型(float和double)3、定点数(decimal)4、字符串(char,varchar,xxxtext)5、二进制数据(xxxBlob)6、日期时间类型二、数
- 五个冷门的Adobe系列软件小技巧
reddingtons
adobe
在当今的数字时代,Adobe系列软件在设计、视频编辑和创意制作领域占据着重要地位。许多学校和教育机构为学生提供教育邮箱,允许他们免费使用Adobe全系列软件的教育订阅。这意味着无论是Photoshop、Illustrator还是PremierePro等热门软件,学生都能轻松获取。然而,本文将分享一些冷门的Adobe软件小技巧,这些技巧主要适用于付费用户,可能不适用于某些免费用户。小技巧一:使用Ad
- 从“一壶浊酒”到“一份报告”,看永洪科技助力郎酒集团的数字化升级之旅
永洪科技
大数据数据分析数据可视化BI
白酒在社交、庆祝和宴请活动中扮演着重要的角色,它与人们的生活密切相关。白酒的制作过程、酿造技艺、酒文化习俗等方面都体现了当地的历史、传统和价值观。同时它也是一种文化的载体,承载着人们对于生活、友谊、团聚的情感和期待。人们通过分享白酒来加强彼此之间的联系和沟通,它成为了社交场合中的重要元素。白酒还通过艺术、文学、电影等形式在文化领域中得到了表达和展示。郎酒庄园作为我国传统的白酒行业,郎酒在国内市场占
- 从“制造”到“智造”,看中集“灯塔”生产线与永洪“数据技术”的紧密融合
永洪科技
制造大数据数据分析BI数据可视化
“灯塔”工厂,这一由世界经济论坛提出的概念,已成为制造业领域的一个新的标杆,它代表着制造业的最高智能化水平。作为全球领先的制造企业,中集集团一直致力于提升生产效率和产品质量,以满足全球贸易的不断增长需求。永洪科技与中集集团的合作,正是围绕打造制造业的“灯塔”生产线而展开的。中集集团成立于1980年,总部位于深圳,是中国制造业的领军企业之一,业务涵盖物流、能源、化工等领域。近年来,随着全球经济的复苏
- IDC权威认证!永洪科技入选 IDC「GBI图谱」,点亮生成式 BI 价值灯塔
永洪科技
科技人工智能BI大数据数据分析
大数据市场正在稳步前进,生成式AI已成为厂商服务的重点方向,其发展离不开数据底座建设和数据工程管理,反过来AI也会帮助开发运维人员、业务人员和管理层更好地使用、查询数据。IDC调研数据显示,在生成式AI的驱动下,未来5年企业在数据管理和数据分析基础设施建设的投资增长率将分别达到8.7%和9.2%。近日,国际咨询机构IDC发布了《中国数据智能市场生态图谱V5.0》,在这一领域,永洪科技以其创新前沿的
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- Matlab实现SSA-HKELM麻雀算法(SSA)优化混合核极限学习机多变量回归预测的详细项目实例
nantangyuxi
MATLAB算法matlab回归人工智能数据挖掘开发语言深度学习
目录Mstlsb实她TTS-HKFLM麻雀算法(TTS)优化混合核极限学习机多变量回归预测她详细项目实例1项目背景介绍...1项目目标她意义...1目标...1意义...2项目挑战及解决方案...2挑战...2解决方案...3项目特点她创新...3创新点...3特点...4项目应用领域...4应用领域...4项目效果预测图程序设计及代码示例...5项目模型架构...6数据预处理...6混合核极限学
- python垃圾分类游戏_垃圾分类就要来了?教你使用Python轻松完成垃圾分类
weixin_39627390
python垃圾分类游戏
从7月1日起,上海市正式实施《上海市生活垃圾管理条例》。条例规定,个人混合投放垃圾今后可最高罚200元,单位混装混运,最高可罚至5万元,而且违规还将会列入征信,堪称“史上最严垃圾分类措施”。相信最近一段时间大家已经被上海的小伙伴们因为垃圾分类的困扰而刷屏了,就在大家还在一片“与我无瓜”中暗自庆幸时,现实给了我们一击:该来的总要来,谁都逃不过去。其实,在我国垃圾分类的举措要从2000年开始,但效果并
- 生成对抗网络(GAN)的高级变体及在图像生成领域的创新实践
算法探索者
生成对抗网络计算机视觉人工智能
摘要生成对抗网络(GAN)自提出以来,在诸多领域取得了显著进展,尤其是在图像生成方面展现出强大的潜力。本文深入探讨了GAN的多种高级变体,如CycleGAN、StyleGAN等,详细分析它们在结构设计、训练机制上的创新之处,阐述其在生成高分辨率、多样化图像时具备的独特优势,并结合丰富的实际案例,展示这些变体在图像生成领域的卓越应用成果,为相关研究与应用提供全面且深入的参考。一、引言生成对抗网络(G
- 深度学习篇---对角矩阵&矩阵的秩&奇异矩阵
Ronin-Lotus
程序代码篇深度学习篇深度学习矩阵人工智能线性代数
文章目录前言一、对角矩阵(DiagonalMatrix)1.1定义1.2特性行列式运算简化1.3应用领域深度学习信号处理量子力学经济学二、矩阵的秩(RankofaMatrix)2.1定义2.2特性满秩降秩影响2.3应用领域深度学习图像压缩推荐系统控制理论三、奇异矩阵(SingularMatrix)3.1定义3.2特性秩不足行列式为零3.3应用领域深度学习正则化损失函数结构工程统计学数值计算四、跨领
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- 探索AI模型的巅峰之战:ChatGPT、DeepSeek与Grok 3,谁才是最强?
温暖阳光阿斌
人工智能chatgpt
近年来,人工智能领域正处于一场高速迭代的革命中。大型语言模型(LLMs)如ChatGPT、DeepSeek和Grok3纷纷亮相,各展所长,为人们带来了前所未有的体验。在这场"谁是最强"的竞争中,每一方都展现出了令人惊叹的能力和独特的优势。然而,这些模型之间的差异和特点,究竟是什么?它们各自的优势在哪里?又有哪些隐藏的短板?本文将带您深入了解这三位AI巨头的亮点与争议,共同探讨它们在AI领域的位置,
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,