- 十五天Python系统学习教程第十五天
Day15详细学习计划:Python综合项目实战与学习路径规划学习目标✅综合运用前14天知识完成完整项目开发✅掌握生产级项目架构设计与优化技巧✅制定后续学习计划与技能提升方案✅理解Python工程化开发最佳实践一、实战项目:企业级任务管理系统1.1项目需求核心功能:用户认证(JWT令牌)任务CRUD与状态流转(待办/进行中/已完成)任务分类与优先级管理数据统计可视化(任务完成率/耗时分析)邮件通知
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- OpenHarmony解读之设备认证:Pake协议详解与实战
陈乔布斯
鸿蒙开发HarmonyOSOpenHarmonyharmonyos分布式鸿蒙开发软总线openHarmony嵌入式硬件
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)①鸿蒙应用开发与鸿蒙系统开发哪个更有前景?②嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~③对于大前端开发来说,转鸿蒙开发究竟是福还是祸?④鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?⑤记录一场鸿蒙开发岗位面试经历~⑥持续更新中……一、概述在设备认证过程中,pake协议用于认证会话密钥协商,基于该会话密钥,双方可以安全地交换各自的
- AI LLM架构与原理 - 预训练模型深度解析
陈乔布斯
AI人工智能大模型人工智能架构机器学习深度学习大模型PythonAI
一、引言在人工智能领域,大型语言模型(LLM)的发展日新月异,预训练模型作为LLM的核心技术,为模型的强大性能奠定了基础。预训练模型通过在大规模无标注数据上进行学习,能够捕捉语言的通用模式和语义信息,从而在各种自然语言处理任务中展现出卓越的能力。本文将深入探讨AILLM架构与原理中预训练模型的方法论和技术,结合图解、代码解析和实际案例,为读者呈现一个全面且易懂的预训练模型图景。二、预训练模型的基本
- Python程序员如何制定学习计划?提高编写代码的能力
在工作和生活压力之下,如何提升自己的技能和能力?这是许多人都面临的问题。如果你也有这样的问题,那么首先要明确的是,要想提升自己的能力,必须要有一个清晰的计划和方向。这个计划可以是长期的,也可以是短期的,但必须要有一个大的方向性。接下来,我们来看看如何制定一个有效的计划。如果你不知道如何制定计划,其实很简单。你可以闭上眼睛,想一想自己哪些方面比较薄弱,比如多线程锁、Spring的一些核心技术源码、分
- 深度学习微调中的优化器全景解析:从理论到实践
北辰alk
AI深度学习人工智能
文章目录一、基础优化器:深度学习微调的基石1.1随机梯度下降(SGD)1.2AdaGrad(自适应梯度算法)二、自适应优化器:现代深度学习的标配2.1RMSProp2.2Adam(自适应矩估计)三、大模型微调专用优化器3.1LAMB(Layer-wiseAdaptiveMoments)3.2Sophia(二阶优化启发)四、优化器性能对比研究4.1在GLUE基准上的表现(BERT-base微调)4.
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- PyTorch 详细安装教程及核心API使用指南
慕婉0307
pytorchpytorch人工智能python
一、PyTorch简介PyTorch是由FacebookAIResearch(FAIR)于2016年开发的开源深度学习框架,现已成为学术界和工业界最受欢迎的深度学习工具之一。其核心优势在于采用了动态计算图(DynamicComputationGraph,又称"define-by-run"机制),这使得开发者能够像编写普通Python代码一样构建神经网络,并在运行时动态调整计算图结构,大大提高了研究
- 对于报错..\meson.build:1:0: ERROR: Unknown compiler(s): [[‘icl‘], [‘cl‘], [‘cc‘], [‘gcc‘], [‘clang‘]等
随风万里无云
笔记笔记
解决方案1.安装完整的C/C++编译环境适用于Windows的官方编译器(MSVC):下载并安装VisualStudio2022安装时勾选“使用C++的桌面开发”工作负载,并确保勾选以下组件:•MSVCv143-VS2022C++生成工具•Windows10/11SDK•C++核心功能完成安装后重启计算机2.验证编译器是否可用打开命令提示符(CMD)或PowerShell。运行以下命令检查cl.e
- MySQL 学习 之 你还在用 TIMESTAMP 吗?
zxguan
mysql学习数据库
目录1.弊端1.1.取值范围1.2.时区依赖1.3.隐式转换2.区别3.解决1.弊端1.1.取值范围TIMESTAMP的取值范围为1970-01-0100:00:01UTC到2038-01-1903:14:07UTC,超出范围的数据会被强制归零或触发异常。具体表现为在基金债券等业务中,到期日可能是一个比较晚的未来的时间,很可能就会出现超出TIMESTAMP范围的时间。现在已经2025年了,系统崩
- 【Python】深入解析 Hydra 库
宅男很神经
python开发语言
第一章:混沌的终结:在配置泥潭中挣扎与Hydra的曙光在任何一个软件项目的生命周期中,无论是小型的个人脚本,还是大型的企业级分布式系统,我们都无法回避一个核心问题:如何管理配置。配置,是连接我们静态的代码逻辑与动态的运行环境之间的桥梁。它决定了我们的程序连接哪个数据库、使用哪个API密钥、以多大的批次处理数据、模型的学习率应该是多少、日志应该输出到哪里、以何种级别输出…可以说,配置定义了程序的行为
- 量化开发(系列第3篇): C++在高性能量化交易中的核心应用与技术栈深度解析
Natsume1710
c++开发语言性能优化python
本文为《量化开发》系列第3篇参考GitHub项目:Awesome-QuantDev-Learn前言在量化交易领域,Python以其开发效率高、生态系统丰富等优势,成为策略研究、数据分析及中低频交易的首选语言。在本系列前两篇文章中,我们详细探讨了Python在量化入门与策略回测中的实践。然而,当进入对延迟要求极为严苛的高频交易(High-FrequencyTrading,HFT)领域时,Python
- Python量化策略与回测框架实战:从“纸上谈兵”到“真金白银”的第一步(系列第2篇)
Natsume1710
python开发语言github
作者:GitHub项目地址Awesome-QuantDev-Learn本文为量化开发学习路线系列第2篇,欢迎收藏与关注。引言:为什么选择Python作为量化入门的起点?在上一篇文章中,我们详细讲解了量化开发的基本框架与开发者思维的转变路径。那么,具体要如何开始第一步实践呢?答案是:从Python入门。Python以其快速原型开发能力、丰富的数据分析工具包,以及良好的社区生态,已经成为全球范围内量化
- C/C++ 求模运算符%的应用
求模运算符用于整数运算。求模运算符给出其左侧整数除以右侧整数的余数。例:15%4=3(读作15求模4得3)因为15比4得三倍多3,即15除以4得余数时3.示例,我们有16通道数从0到15,经过计算我只需要指定为0通道还是1通道。02468101214为0通道,其余为1通道。示例源码://Len_mo.cpp:此文件包含"main"函数。程序执行将在此处开始并结束。//#includeintmain
- C语言基础知识点(十四)求模符号%
今天继续看基础,发现这个求模符号可以对正数取模也可以对复数取模。求模运算符的作用是给出左侧证书除以右侧证书的余数。求模预算符只能用于整数不能用于浮点数。学习代码#includeintmain(){inta,b,c,d;a=11;b=5;c=-11;d=-5;printf("11%%5:%d\n",a%b);printf("11%%-5:%d\n",a%d);printf("-11%%5:%d\n"
- C语言笔记 - 模运算符(%)的用法
UkjUnity
c语言笔记算法C语言
在C语言中,模运算符(%)是一种常见的运算符,用于计算两个整数相除后得到的余数。它的使用非常简单,但在实际的编程中有很多有用的应用场景。本文将详细介绍模运算符的用法,并提供一些相关的源代码示例。基本用法模运算符采用百分号(%)表示,它的作用是计算两个整数相除后的余数。例如,表达式"10%3"将返回1,因为10除以3的余数是1。下面是一个基本示例:#includeintmain(){intdivid
- 奇数和偶数的求法c++
今天给大家分享一个奇偶数的求法:#includeusingnamespacestd;intmain(){inta=0;cin>>a;if(a%2==0){cout>a;这是输入和声明if(a%2==0){cout<<"偶数";}else{cout<<"奇数";}这部分是判断的点个赞吧,求求了~
- C++ 变量作用域
写代码的小球
java前端javascript
一般来说有三个地方可以定义变量:在函数或一个代码块内部声明的变量,称为局部变量。在函数参数的定义中声明的变量,称为形式参数。全局变量在所有函数外部定义的变量(通常是在程序的头部),称为全局变量。全局变量的值在程序的整个生命周期内都是有效的。全局变量可以被任何函数访问。也就是说,全局变量一旦声明,在整个程序中都是可用的。在所有函数外部声明的变量,称为全局变量。作用域是程序的一个区域,变量的作用域可以
- 学习虚幻C++开发日志——初识虚幻框架
未来牛马之星
学习虚幻C++开发日志学习虚幻c++
1.虚幻引擎架构1.1虚幻引擎模块(Modules)官方文档:虚幻引擎模块|虚幻引擎5.4文档|EpicDeveloperCommunity(epicgames.com)模块(Modules)是虚幻引擎(UE)的软件架构的基本构建块。Module分为引擎模块,项目模块,插件模块.注意:1.要控制模块的加载方式和时间,请在.uproject或.uplugin文件中为你的模块添加配置信息。这包括模块的
- Semtech 新的3.3V TVS RClamp3374N 在以太网上的雷击防护应用
_Nickelback
作者:JackChengSemtech上网日期:2012年04月16日评论[0]分享到:新浪微博qq空间qq微博人人网百度搜藏字号:关键字:RClamp2574NSemtech浪涌Semtech新的3.3VTVSRClamp3374N保护八线介绍Semtech的RClamp2574N可以被配置以保护高达8个高速线(四对线)应用,如机顶盒,服务器,笔记本,和台式电脑。这些应用通常不需要同一水平的闪电
- Docker技术全景解析:从核心原理到实践应用
Liudef06小白
docker容器运维
Docker技术全景解析:从核心原理到实践应用引言:容器化革命的引擎2013年诞生的Docker并非容器技术的发明者,却成功地将Linux容器(LXC)这一底层技术转化为开发者友好的标准化工具。它通过镜像封装、环境一致性和资源隔离三大创新,解决了“在我机器上能跑,线上为什么不行”这一行业顽疾。Docker的核心突破在于创建了跨环境的应用交付标准——开发者构建的Docker镜像可在开发笔记本、测试服
- python笔记-Selenium谷歌浏览器驱动下载
hero.zhong
python笔记selenium
Selenium谷歌浏览器驱动下载地址:https://googlechromelabs.github.io/chrome-for-testing/#stable下面是遇到的问题:python网络爬虫技术中使用谷歌浏览器代码,报错:OSError:[WinError193]%1不是有效的Win32应用程序:遇到错误OSError:[WinError193]%1不是有效的Win32应用程序通常意味着
- 【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
运器123
AI大模型支持向量机机器学习人工智能ai大数据AI编程算法
一、算法核心思想支持向量机(SVM)是一种强大的监督学习算法,核心思想是通过寻找最优超平面实现分类或回归:分类目标:找到能最大化两类数据间隔的超平面回归目标:找到包含最多数据点的ε带关键概念图解超平面:w·x+b=0/\/\+1|支持向量|-1|●●||●●||●●||_________________|最大间隔(margin)二、数学原理与优化问题1.线性可分情况目标函数:\min_{w,b}\
- 2022项目实训“异步分布式联邦学习”第五周报告
一、本周工作进度我在本周的工作进度主要集中于两个技术要点——即Axios和WebSocket。这两种技术方法有着本质上的不同,因而具体实现出来之后的效果也有所不同,下面将会分别说明。1.Axios(Ajax封装)首先要谈的内容是Axios,Axios是一个基于promise的HTTP库,是目前前端最流行的ajax请求库。Axios的优势在于,相比传统的Ajax本身是针对MVC的编程,Axios更加
- Spring Boot分层架构详解:从Controller到Service再到Mapper的完整流程
Leaton Lee
springboot架构后端java
引言:为什么学习SpringBoot分层架构?在现代企业级应用开发中,分层架构是至关重要的。它不仅提高了代码的可维护性,还使得团队协作更加高效。SpringBoot作为Java后端开发的事实标准,其分层架构模式几乎贯穿了所有企业级应用的开发流程。本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Controller、POJO、Mapper、Service、ServiceImp
- 上位机李工架构之一
zhxup606
架构
本篇将围绕半导体可靠性测试机上位机开发,提供一个系统性教程与学习路线,结合C#高级编程(反射、接口、抽象类、泛型、设计模式、集合、特性、索引、委托事件、匿名方法、多线程、面向对象等)和异步/同步对比,深入讲解如何高效开发上位机系统。同时,基于前文的实时数据可视化(WPF、LiveCharts2、WebSocket)、AI异常检测(ML.NET隔离森林)和异步任务调度(DAG调度、PID控制),本篇
- Pixhawk源码笔记五:存储与EEPROM管理
zhouxinlin2009
这里,我们对APMEEPROM存储接口进行讲解。如有问题,可以交流
[email protected]。新浪@WalkAnt,转载本博客文章,请注明出处,以便更大范围的交流,谢谢。第六部分存储与EEPROM管理详细参考:http://dev.ardupilot.com/wiki/learning-ardupilot-storage-and-eeprom-management/用户参数、航点、集结点、地图
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f