【动态规划】08路径问题_下降路径最小和_C++(medium)

题目链接:leetcode下降路径最小和


目录

题目解析:

算法原理

1.状态表示

2.状态转移方程

3.初始化

4.填表顺序

5.返回值

编写代码


题目解析:

【动态规划】08路径问题_下降路径最小和_C++(medium)_第1张图片

题目让我们求通过 matrix 的下降路径  最小和 

由题可得:

在下一行选择的元素和当前行所选元素最多相隔一列

(即位于正下方或者沿对角线向左或者向右的第一个元素)

如图:

【动态规划】08路径问题_下降路径最小和_C++(medium)_第2张图片

我们用示例一分析:

【动态规划】08路径问题_下降路径最小和_C++(medium)_第3张图片

当我们从数字1开始走的时,此时有如上图几种走法;

其他数字也是同理

我们这里只要下降路径 的 最小和,

所以这里我们这里可以得到这两条下降路径和最短:

【动态规划】08路径问题_下降路径最小和_C++(medium)_第4张图片


算法原理:

1.状态表示

先创建一个dp表

首先先思考dp表里面的值所表示的含义(是什么?)

dp[i][j]表示到达[i][j]位置的下降路径的最小和。

这种状态表示怎么来的?

1.经验+题目要求

用之前或者之后的状态,推导出dp[i][j]的值;

根据最近的最近的一步,来划分问题

经验:以[i][j]位置为结尾,用之前的状态推导出dp[i][j]的值

题目要求:求下降路径  最小和

2.状态转移方程

dp[i][j]等于什么?

根据最近的最近的一步,来划分问题

【动态规划】08路径问题_下降路径最小和_C++(medium)_第5张图片

如图,求[i][j]位置的下降路径最小和时,分为三种情况:

第一种:[i-1][j-1]位置加上[i][j]位置的值

【动态规划】08路径问题_下降路径最小和_C++(medium)_第6张图片

我们此时只要用到达[i-1][j-1]位置的下降路径的最小和,再加上[i][j]位置的值(matrix[i][j])就可以得到下降路径最小和。

而这里的“到达[i-1][j-1]位置的下降路径的最小和”正好是我们的状态表示dp[i-1][j-1];

即:dp[i]=dp[i-1][j-1]+matrix[i][j]

第二种:[i-1][j]位置加上[i][j]位置的值

【动态规划】08路径问题_下降路径最小和_C++(medium)_第7张图片

我们此时只要用到达[i-1][j]位置的下降路径的最小和,再加上[i][j]位置的值(matrix[i][j])就可以得到下降路径最小和。

而这里的“到达[i-1][j]位置的下降路径的最小和”正好是我们的状态表示dp[i-1][j];

即:dp[i]=dp[i-1][j]+matrix[i][j]

第三种:[i-1][j+1]位置加上[i][j]位置的值

【动态规划】08路径问题_下降路径最小和_C++(medium)_第8张图片

我们此时只要用到达[i-1][j+1]位置的下降路径的最小和,再加上[i][j]位置的值(matrix[i][j])就可以得到下降路径最小和。

而这里的“到达[i-1][j+1]位置的下降路径的最小和”正好是我们的状态表示dp[i-1][j+1];

即:dp[i]=dp[i-1][j+1]+matrix[i][j]

总结以上三种情况:

【动态规划】08路径问题_下降路径最小和_C++(medium)_第9张图片

因为我们这里要取下降路径的最小和

所以状态转移方程应该为:

dp[i][j]=min({(int)dp[i-1][j-1],dp[i-1][j],dp[i-1][j+1]})+matrix[i-1][j-1];

3.初始化

(保证填表的时候不越界)

在0行0列和n列的时候越界,所以我们这里可以在m*n的外围多加1行2列,如图:

【动态规划】08路径问题_下降路径最小和_C++(medium)_第10张图片

还有一个问题是:

我们要拿新增用来初始化的行和列要初始化为几呢?

这里我们需要注意的一点就是在dp[1][1]的时候,最小的下降路径就是他本身

根据状态转移方程,如下图三个位置会影响他的值

【动态规划】08路径问题_下降路径最小和_C++(medium)_第11张图片

为了能够取到他本身,

我们这里需要把这三个位置的其中一个初始化为0,其他的位置初始化为INT_MAX(无穷大)

4.填表顺序

(为了填写当前状态的时候,所需要的状态已经计算过了)

这里所需要的状态是:dp[i-1][j-1],dp[i-1][j],dp[i-1][j+1]

所以应该从上到下,从左到右填表

5.返回值

(根据题目要求和状态表示)

综上分析:

返回值为:最后一行的最小值


编写代码:

【动态规划】08路径问题_下降路径最小和_C++(medium)_第12张图片

class Solution {
public:
    int minFallingPathSum(vector>& matrix) {
    //1.创建dp表
    //2.初始化
    //3.填表
    //4.返回结果

        int n=matrix.size();
        vector> dp(n+1,vector(n+2,INT_MAX));
        for(int i=0;i

你可能感兴趣的:(动态规划,算法,c++,动态规划)