现在大多数公司都是使用SpringBoot技术,所以使用SpringBoot整合Kafka是比较重要的。接下来我们就来使用SpringBoot整合Kafka。
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.jihu</groupId>
<artifactId>spring-boot-kafka</artifactId>
<version>1.0-SNAPSHOT</version>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.1.2.RELEASE</version>
<relativePath /> <!-- lookup parent from repository -->
</parent>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
</dependencies>
</project>
server:
port: 8080
spring:
kafka:
bootstrap-servers: 192.168.131.171:9092,192.168.131.171:9093,192.168.131.171:9094
producer: # 生产者
retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
batch-size: 16384
buffer-memory: 33554432
acks: 1
# 指定消息key和消息体的编解码方式
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: default-group
enable-auto-commit: false
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
listener:
# 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
# RECORD
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交
# BATCH
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交
# TIME
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交
# COUNT
# TIME | COUNT 有一个条件满足时提交
# COUNT_TIME
# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交
# MANUAL
# 手动调用Acknowledgment.acknowledge()后立即提交,一般使用这种
# MANUAL_IMMEDIATE
ack-mode: manual_immediate
@SpringBootApplication
public class KafkaApplication {
public static void main(String[] args) {
SpringApplication.run(KafkaApplication.class);
}
}
@RestController
public class KafkaController {
private final static String TOPIC_NAME = "my-replicated-topic";
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@RequestMapping("/send")
public String send(@RequestParam("msg") String msg) {
kafkaTemplate.send(TOPIC_NAME, "key", msg);
return String.format("消息 %s 发送成功!", msg);
}
}
@Component
public class MyConsumer {
/**
* @param record record
* @KafkaListener(groupId = "testGroup", topicPartitions = {
* @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
* @TopicPartition(topic = "topic2", partitions = "0",
* partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
* },concurrency = "6")
* //concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数
*/
@KafkaListener(topics = "my-replicated-topic", groupId = "jihuGroup")
public void listenJihuGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println("jihuGroup message: " + value);
System.out.println("jihuGroup record: " + record);
//手动提交offset,一般是提交一个banch,幂等性防止重复消息
// === 每条消费完确认性能不好!
ack.acknowledge();
}
//配置多个消费组
@KafkaListener(topics = "my-replicated-topic", groupId = "jihuGroup2")
public void listenJihuGroup2(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println("jihuGroup2 message: " + value);
System.out.println("jihuGroup2 record: " + record);
//手动提交offset
ack.acknowledge();
}
}
编写完成后我们来启动这个SpringBoot项目。
我们在浏览器输入消息进行发送:
检查控制台,发现收到了消息,至此SpringBoot整合Kafka完成。
当然,我们还有很多更复杂的消费和发送场景,会在后面的文章更新,欢迎大家关注。