【Python】FastAPI学习记录(一)

参数、请求体

  • 使用记录
    • 查询参数
      • 字符串校验
    • 路径参数
    • 参数校验
      • 数值校验
    • 请求体
      • 可选请求体
      • 多个请求体
      • 使用Body
      • 字段校验
      • 嵌套模型

使用记录

查询参数

字符串校验

导入Query即可快速使用:

from typing import Union

from fastapi import FastAPI, Query

app = FastAPI()


@app.get("/items/")
async def read_items(
    q: Union[str, None] = Query(
        default=None,
        # 接口的title
        title="Query string",
        # 接口描述
        description="Query string for the items to search in the database that have a good match",
        # 参数最小长度,当然也有max_length
        min_length=3,
    ),
):
    results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
    if q:
        results.update({"q": q})
    return results

对于请求参数在URL里面的名称可以使用alias设置别名,这样就会过去url里面的item-query参数:

@app.get("/items/")
async def read_items(q: Union[str, None] = Query(default=None, alias="item-query")):
    results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]}
    if q:
        results.update({"q": q})
    return results

路径参数

设置路径参数使用Path

建议使用带Annotated的版本

from typing import Annotated

from fastapi import FastAPI, Path, Query

app = FastAPI()


@app.get("/items/{item_id}")
async def read_items(
    item_id: Annotated[int, Path(title="The ID of the item to get")],
    q: Annotated[str | None, Query(alias="item-query")] = None,
):
    results = {"item_id": item_id}
    if q:
        results.update({"q": q})
    return results

路径参数是必须的,因为这是作为路由的一部分

参数校验

数值校验

  • gt:大于(greater than)
  • ge:大于等于(greater than or equal)
  • lt:小于(less than)
  • le:小于等于(less than or equal)

数值校验参数,可以在Path和Query类以及其他一些类中使用

from fastapi import FastAPI, Path, Query

app = FastAPI()


@app.get("/items/{item_id}")
async def read_items(
    *,
    item_id: int = Path(title="The ID of the item to get", ge=0, le=1000),
    q: str,
    size: float = Query(gt=0, lt=10.5),
):
    results = {"item_id": item_id}
    if q:
        results.update({"q": q})
    return results

请求体

可选请求体

如下可以声明一个可选请求体:

from typing import Annotated

from fastapi import FastAPI, Path
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None


@app.put("/items/{item_id}")
async def update_item(
    item_id: Annotated[int, Path(title="The ID of the item to get", ge=0, le=1000)],
    q: str | None = None,
    item: Item | None = None,
):
    results = {"item_id": item_id}
    if q:
        results.update({"q": q})
    if item:
        results.update({"item": item})
    return results

多个请求体

可以声明多个请求体

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None


class User(BaseModel):
    username: str
    full_name: str | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item, user: User):
    results = {"item_id": item_id, "item": item, "user": user}
    return results

这样声明下,FastAPI期望一个类似下面内容的请求体:

{
    "item": {
        "name": "Foo",
        "description": "The pretender",
        "price": 42.0,
        "tax": 3.2
    },
    "user": {
        "username": "dave",
        "full_name": "Dave Grohl"
    }
}

请注意,即使 item 的声明方式与之前相同,但现在它被期望通过 item 键内嵌在请求体中。

使用Body

from typing import Annotated

from fastapi import Body, FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None


class User(BaseModel):
    username: str
    full_name: str | None = None


@app.put("/items/{item_id}")
async def update_item(
    item_id: int, item: Item, user: User, importance: Annotated[int, Body()]
):
    results = {"item_id": item_id, "item": item, "user": user, "importance": importance}
    return results

上面的例子中,引入了Body,他和Query与Path类似,在这里importance将会被内嵌于请求体中,而不是查询参数,按照这样的设置,FastAPI期待如下的请求体:

{
    "item": {
        "name": "Foo",
        "description": "The pretender",
        "price": 42.0,
        "tax": 3.2
    },
    "user": {
        "username": "dave",
        "full_name": "Dave Grohl"
    },
    "importance": 5
}

Body也可以用来包裹单个Pydantic 模型 作为请求体,针对Item而言,如果希望得到下面的请求体:

{
    "item": {
        "name": "Foo",
        "description": "The pretender",
        "price": 42.0,
        "tax": 3.2
    }
}

则可以使用如下代码:

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Annotated[Item, Body(embed=True)]):
    results = {"item_id": item_id, "item": item}
    return results

字段校验

使用Field进行字段设置,这个从pydantic引入,而不是FaskAPI,Field的可用参数和Body等类似

from typing import Annotated

from fastapi import Body, FastAPI
from pydantic import BaseModel, Field

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = Field(
        default=None, title="The description of the item", max_length=300
    )
    price: float = Field(gt=0, description="The price must be greater than zero")
    tax: float | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Annotated[Item, Body(embed=True)]):
    results = {"item_id": item_id, "item": item}
    return results

嵌套模型

很多时候请求体不是简单的层次,可能会出现多种数据类型组合的模式,比如某个字段是list:

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: list = []


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

一般来说,可能对list的字段类型会做限制,比如限制为str,且不能重复,那么可以用set方法:

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    # 使用set,即使传入的list是有重复的也会被处理去重
    tags: set[str] = set()


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

也可以在模型中嵌套模型,如下就是在Item中嵌套了Image:

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

# 声明了Image
class Image(BaseModel):
    url: str
    name: str


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()
    # image是一个Image模型类型
    image: Image | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

这样可以接收一个嵌套的json请求体:

{
    "name": "Foo",
    "description": "The pretender",
    "price": 42.0,
    "tax": 3.2,
    "tags": ["rock", "metal", "bar"],
    "image": {
        "url": "http://example.com/baz.jpg",
        "name": "The Foo live"
    }
}

嵌套时,也可以使用Pydantic中提供的类型进行简单的校验,比如url这种字段,一般是固定格式的,可以使用HttpUrl进行校验:

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()
    image: Image | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

你可能感兴趣的:(python,python,fastapi,运维开发)