目录
一、红黑树的概念
编辑二、红黑树的性质
三、红黑树节点的定义
四、红黑树结构
五、红黑树的插入操作
5.1. 按照二叉搜索的树规则插入新节点
5.2、检测新节点插入后,红黑树的性质是否造到破坏
情况一: cur为红,p为红,g为黑,u存在且为红
情况二: cur为红,p为红,g为黑,u不存在/u为黑
情况三: cur为红,p为红,g为黑,u不存在/u为黑
六、红黑树的验证
七、红黑树与AVL树的比较
八、key结构红黑树整体代码
九、key,value 结构红黑树整体代码
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
红黑树的节点,我们这里使用的是三叉链,方便对后面内容的操作
首先,我们定义了一个枚举常量,来表示红黑树节点的颜色
其次,定义节点,一个红黑树的节点包含<左孩子,右孩子,父节点,数据,颜色>
接着我们定义构造函数<对其节点数据进行初始化>,左右孩子和父节点置空,插入的颜色默认为红色,数据为传入的数据。
enum COLOR
{
BLACK,
RED
};
template
struct RBNode
{
RBNode* _left;
RBNode* _right;
RBNode* _parent;
T _value;
COLOR _color;//颜色
RBNode(const T & value=T())
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _value(value)
, _color(RED)
{}
};
为了后续封装map和set简单一些,在红黑树的实现中增加一个头结点,因为根节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:
相比于AVL树,插入比较简单,效率比较高,红黑树比AVL树的调整次数要少。
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1. 按照二叉搜索的树规则插入新节点
2.检测新节点插入后,红黑树的性质是否造到破坏(有破坏进行调整)
bool Insert(const T& value)
{
// 1. 按照二叉搜索的树方式插入新节点
//搜索树的插入
if (_header->_parent == nullptr)
{
//空树,创建根节点
pNode root = new Node(value);
root->_color = BLACK;
root->_parent = _header;
_header->_parent = root;
_header->_left = root;
_header->_right = root;
return true;
}
//从根开始搜索
pNode cur = _header->_parent;
pNode parent = nullptr;
//查找插入的位置
while (cur)
{
parent = cur;
//按照key值确定位置, key不能重复
if (cur->_value == value)
return false;
else if (cur->_value > value)
cur = cur->_left;
else
cur = cur->_right;
}
//节点创建
cur = new Node(value);
//节点插入
if (parent->_value > cur->_value)
parent->_left = cur;
else
parent->_right = cur;
//节点连接
cur->_parent = parent;
//while()
// {
// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
// 若满足直接退出,否则对红黑树进行旋转着色处理
//}
// 根节点的颜色可能被修改,将其改回黑色
_header->_parent->_color = BLACK;
//更新 _header->_left, _header->_right
_header->_left = leftMost();
_header->_right = rightMost();
return true;
}
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
注意::此时看到的树,又可能是一颗完整的树,也有可能是一颗子树
如果g是根节点,调整完成后,需要把根节点改为黑色
如果g是子树,g一定有双亲(父亲和叔叔),如果g的双亲为红色,则继续往上调整
解决方式:将p,u改为黑,g改为红,然后把g当作cur,继续往上调整,直至cur为根节点(根为黑)
说明:
U有俩种情况:
1.如果U节点不存在,则cur一定是新插入的节点,因为如果cur不为新插入的节点,则cur和p一定有一个节点的颜色为黑色,就不满足性质4:每条路径黑色节点相同
2.如果U节点存在,则其一定是黑色的,那么cue节点原来的颜色一定是黑色的,现在看到其是红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改为红色。
解决方式:p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红
解决方式:p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2
bool insert(const T& value)
{
//搜索树的插入
if (_header->_parent == nullptr)
{
//空树,创建根节点
pNode root = new Node(value);
root->_color = BLACK;
root->_parent = _header;
_header->_parent = root;
_header->_left = root;
_header->_right = root;
return true;
}
//从根开始搜索
pNode cur = _header->_parent;
pNode parent = nullptr;
//查找插入的位置
while (cur)
{
parent = cur;
//按照key值确定位置, key不能重复
if (cur->_value == value)
return false;
else if (cur->_value > value)
cur = cur->_left;
else
cur = cur->_right;
}
//节点创建
cur = new Node(value);
//节点插入
if (parent->_value > cur->_value)
parent->_left = cur;
else
parent->_right = cur;
//节点连接
cur->_parent = parent;
//调整和更新(颜色):连续红色需要调整
while (cur != _header->_parent && cur->_parent->_color == RED)//当前不是根,并且你的父亲是红色
{
//cur:当前节点,parent:父亲节点, gfather:祖父节点,uncle:叔叔节点
parent = cur->_parent;
pNode gfather = parent->_parent;
if (gfather->_left == parent)
{
pNode uncle = gfather->_right;
//uncle 存在且为红
if (uncle && uncle->_color == RED)
{
//修改颜色
parent->_color = uncle->_color = BLACK;
gfather->_color = RED;
//继续向上更新
cur = gfather;
}
else
{
//如果存在双旋的场景,可以先进行一次单旋,使它变成单旋的场景
if (cur == parent->_right)
{
RotateL(parent);
swap(cur, parent);
}
//右旋
RotateR(gfather);
//修改颜色
parent->_color = BLACK;
gfather->_color = RED;
//停止调整
break;
}
}
//gfather->_right == parent
else
{
pNode uncle = gfather->_left;
if (uncle && uncle->_color == RED)
{
//修改颜色
uncle->_color = parent->_color = BLACK;
gfather->_color = RED;
cur = gfather;
}
else
{
//判断是否有双旋的场景
if (cur == parent->_left)
{
//以parent右旋
RotateR(parent);
//交换指针
swap(cur, parent);
}
//以gfather 左旋
RotateL(gfather);
//修改颜色
parent->_color = BLACK;
gfather->_color = RED;
//停止调整
break;
}
}
}
//根的颜色始终是黑的 根:_header->_parent
_header->_parent->_color = BLACK;
//更新 _header->_left, _header->_right
_header->_left = leftMost();
_header->_right = rightMost();
return true;
}
红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
2. 检测其是否满足红黑树的性质
bool isRBTree()
{
pNode root = _header->_parent;
if (root == nullptr)
return true;
if (root->_color == RED)
{
cout << "根节点必须是黑色的!!!" << endl;
return false;
}
//根节点是黑色
//需要判断每条路径上黑色个数相同
//可以先任意遍历一条路径 比如走最右路径。查找black数量
pNode cur = root;
int blackCount = 0;
while (cur)
{
if (cur->_color == BLACK)
++blackCount;
cur = cur->_right;
}
int k = 0;
return _isRBTree(root, k, blackCount);
}
bool _isRBTree(pNode root, int curBlackCount, int totalBlackCout)//curBlackCount:走到当前节点黑色个数
{
//每条路径上黑色个数相同//没有连续红色结点
//一条路径走完
if (root == nullptr)
{
if (curBlackCount != totalBlackCout)
{
cout << "每条路径-黑色结点个数不同" << endl;
return false;
}
return true;
}
if (root->_color == BLACK)
++curBlackCount;
//没有红色连续
pNode parent = root->_parent;
if (parent->_color == RED && root->_color == RED)
{
cout << "有连续的红色结点" << endl;
return false;
}
return _isRBTree(root->_left, curBlackCount, totalBlackCout) && _isRBTree(root->_right, curBlackCount, totalBlackCout);
}
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( ),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
#define _CRT_SECURE_NO_WARNINGS 1
#include
#include
#include
using namespace std;
enum COLOR
{
BLACK,
RED
};
template
struct RBNode
{
RBNode* _left;
RBNode* _right;
RBNode* _parent;
T _value;
COLOR _color;//颜色
RBNode(const T & value=T())
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _value(value)
, _color(RED)
{}
};
template
class RBTree
{
public:
typedef RBNode Node;
typedef Node* pNode;
RBTree()
{
//构建空的红黑树 空树--》带头的红黑树,头不是根
_header = new Node;
_header->_left = _header;
_header->_right = _header;
}
/*
红黑树插入:
1.相对于AVL树,插入比较简单,且效率高,红黑树比AVL树调整次数要少
2.二叉树进行插入
3.判断有没有连续的红色结点
如果有:
a:只需要修改颜色: uncle为红色
b:修改颜色,旋转:u不存在、存在且为黑
单旋:cur,parent在gfather的同一边
双旋:cur,parent不在gfather的同一边,首先经过一次单璇,交换指针,转化为上面单璇场景,
没有:
不需要做任何操作,插入结束。
*/
bool insert(const T& value)
{
//搜索树的插入
if (_header->_parent == nullptr)
{
//空树,创建根节点
pNode root = new Node(value);
root->_color = BLACK;
root->_parent = _header;
_header->_parent = root;
_header->_left = root;
_header->_right = root;
return true;
}
//从根开始搜索
pNode cur = _header->_parent;
pNode parent = nullptr;
//查找插入的位置
while (cur)
{
parent = cur;
//按照key值确定位置, key不能重复
if (cur->_value == value)
return false;
else if (cur->_value > value)
cur = cur->_left;
else
cur = cur->_right;
}
//节点创建
cur = new Node(value);
//节点插入
if (parent->_value > cur->_value)
parent->_left = cur;
else
parent->_right = cur;
//节点连接
cur->_parent = parent;
//调整和更新(颜色):连续红色需要调整
while (cur != _header->_parent && cur->_parent->_color == RED)//当前不是根,并且你的父亲是红色
{
//cur:当前节点,parent:父亲节点, gfather:祖父节点,uncle:叔叔节点
parent = cur->_parent;
pNode gfather = parent->_parent;
if (gfather->_left == parent)
{
pNode uncle = gfather->_right;
//uncle 存在且为红
if (uncle && uncle->_color == RED)
{
//修改颜色
parent->_color = uncle->_color = BLACK;
gfather->_color = RED;
//继续向上更新
cur = gfather;
}
else
{
//如果存在双旋的场景,可以先进行一次单旋,使它变成单旋的场景
if (cur == parent->_right)
{
RotateL(parent);
swap(cur, parent);
}
//右旋
RotateR(gfather);
//修改颜色
parent->_color = BLACK;
gfather->_color = RED;
//停止调整
break;
}
}
//gfather->_right == parent
else
{
pNode uncle = gfather->_left;
if (uncle && uncle->_color == RED)
{
//修改颜色
uncle->_color = parent->_color = BLACK;
gfather->_color = RED;
cur = gfather;
}
else
{
//判断是否有双旋的场景
if (cur == parent->_left)
{
//以parent右旋
RotateR(parent);
//交换指针
swap(cur, parent);
}
//以gfather 左旋
RotateL(gfather);
//修改颜色
parent->_color = BLACK;
gfather->_color = RED;
//停止调整
break;
}
}
}
//根的颜色始终是黑的 根:_header->_parent
_header->_parent->_color = BLACK;
//更新 _header->_left, _header->_right
_header->_left = leftMost();
_header->_right = rightMost();
return true;
}
pNode leftMost()
{
pNode cur = _header->_parent;
while (cur && cur->_left != nullptr)
{
cur = cur->_left;
}
return cur;
}
pNode rightMost()
{
pNode cur = _header->_parent;
while (cur && cur->_right != nullptr)
{
cur = cur->_right;
}
return cur;
}
void RotateR(pNode parent)
{
pNode subL = parent->_left;
pNode subLR = subL->_right;
// 1
subL->_right = parent;
// 2
parent->_left = subLR;
// 3
if (subLR)
subLR->_parent = parent;
// 4, 5
if (parent != _header->_parent)
{
// subL <---> parent->parent
pNode gParent = parent->_parent;
if (gParent->_left == parent)
gParent->_left = subL;
else
gParent->_right = subL;
subL->_parent = gParent;
}
else
{
//更新根节点
_header->_parent = subL;
//subL->_parent = nullptr;
subL->_parent = _header;
}
// 6
parent->_parent = subL;
}
void RotateL(pNode parent)
{
pNode subR = parent->_right;
pNode subRL = subR->_left;
subR->_left = parent;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
if (parent != _header->_parent) {
pNode gParent = parent->_parent;
if (gParent->_left == parent)
gParent->_left = subR;
else
gParent->_right = subR;
subR->_parent = gParent;
}
else
{
_header->_parent = subR;
//根的父节点不是nullptr
//subR->_parent = nullptr;
subR->_parent = _header;
}
parent->_parent = subR;
}
void inOrder()
{
_inOrder(_header->_parent);
}
void _inOrder(pNode root)
{
if (root) {
_inOrder(root->_left);
cout << root->_value<_right);
}
}
bool isRBTree()
{
pNode root = _header->_parent;
if (root == nullptr)
return true;
if (root->_color == RED)
{
cout << "根节点必须是黑色的!!!" << endl;
return false;
}
//根节点是黑色
//需要判断每条路径上黑色个数相同
//可以先任意遍历一条路径 比如走最右路径。查找black数量
pNode cur = root;
int blackCount = 0;
while (cur)
{
if (cur->_color == BLACK)
++blackCount;
cur = cur->_right;
}
int k = 0;
return _isRBTree(root, k, blackCount);
}
bool _isRBTree(pNode root, int curBlackCount, int totalBlackCout)//curBlackCount:走到当前节点黑色个数
{
//每条路径上黑色个数相同//没有连续红色结点
//一条路径走完
if (root == nullptr)
{
if (curBlackCount != totalBlackCout)
{
cout << "每条路径-黑色结点个数不同" << endl;
return false;
}
return true;
}
if (root->_color == BLACK)
++curBlackCount;
//没有红色连续
pNode parent = root->_parent;
if (parent->_color == RED && root->_color == RED)
{
cout << "有连续的红色结点" << endl;
return false;
}
return _isRBTree(root->_left, curBlackCount, totalBlackCout) && _isRBTree(root->_right, curBlackCount, totalBlackCout);
}
private:
pNode _header;
};
#pragma once
#include
using namespace std;
//定义颜色
enum Color
{
RED,
BLACK,
};
// 定义节点
template
struct RBTreeNode
{
pair _kv;
RBTreeNode* _left;
RBTreeNode* _right;
RBTreeNode* _parent;
Color _col;
RBTreeNode(const pair& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _col(RED)
{}
};
template
class RBTree
{
typedef RBTreeNode Node;
public:
bool Insert(const pair& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
else
{
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
// 情况一 uncle存在且为红
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
// 情况二
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
// 情况三
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
uncle->_col = parent->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
// g
// p
// c
if (cur == parent->_left)
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
// g
// p
// c
else
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
}
void RotateL(Node* parent)
{
Node* SubR = parent->_right;
Node* SubRL = SubR->_left;
parent->_right = SubRL;
if (SubRL)
SubRL->_parent = parent;
Node* ppNode = parent->_parent;
SubR->_left = parent;
parent->_parent = SubR;
if (ppNode == nullptr)
{
_root = SubR;
SubR->_parent = nullptr;
}
else
{
if (parent == ppNode->_left)
{
ppNode->_left = SubR;
SubR->_parent = ppNode;
}
else
{
ppNode->_right = SubR;
SubR->_parent = ppNode;
}
}
}
void RotateR(Node* parent)
{
Node* SubL = parent->_left;
Node* SubLR = SubL->_right;
parent->_left = SubLR;
if (SubLR)
SubLR->_parent = parent;
Node* ppNode = parent->_parent;
SubL->_right = parent;
parent->_parent = SubL;
if (ppNode == nullptr)
{
_root = SubL;
SubL->_parent = nullptr;
}
else
{
if (parent == ppNode->_left)
{
ppNode->_left = SubL;
}
else
{
ppNode->_right = SubL;
}
SubL->_parent = ppNode;
}
}
void InOrder()
{
_InOrder(_root);
}
void _InOrder(Node* root)
{
if (root == nullptr)
return;
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
bool check(Node* root, int blackNum, int ref)
{
if (root == nullptr)
{
if (blackNum != ref)
{
cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
return false;
}
return true;
}
if (root->_col == RED && root->_parent->_col == RED)
{
cout << "违反规则:出现连续红色节点" << endl;
return false;
}
if (root->_col == BLACK)
blackNum++;
return check(root->_left, blackNum, ref)
&& check(root->_right, blackNum, ref);
}
bool IsBalance()
{
if (_root == nullptr)
return true;
if (_root->_col != BLACK)
return false;
int ref = 0;// 统计黑节点的个数
Node* left = _root;
while (left)
{
if (left->_col == BLACK)
ref++;
left = left->_left;
}
return check(_root, 0, ref);
}
private:
Node* _root = nullptr;
};