# -*- coding: UTF-8 -*- import matplotlib matplotlib.use('TkAgg') from matplotlib.font_manager import FontProperties import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np import operator import matplotlib.pyplot as plt #import tkinter #import kNN """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 Modify: 2017-03-24 """ def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的行数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中用items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) print(sortedClassCount) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0] """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 Modify: 2017-03-24 """ def file2matrix(filename): #打开文件,此次应指定编码, fr = open(filename,'r',encoding = 'utf-8') #读取文件所有内容 arrayOLines = fr.readlines() #针对有BOM的UTF-8文本,应该去掉BOM,否则后面会引发错误。 arrayOLines[0]=arrayOLines[0].lstrip('\ufeff') #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 #plt.show() for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 # 对于datingTestSet2.txt 最后的标签是已经经过处理的 标签已经改为了1, 2, 3 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector plt.show() """ 函数说明:可视化数据 Parameters: datingDataMat - 特征矩阵 datingLabels - 分类Label Returns: 无 Modify: 2017-03-24 """ def showDatas(datingDataMat, datingLabels): #设置汉字格式 font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) ##需要查看自己的电脑是否会包含该字体 #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8) #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域 #fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8)) fig, axs = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=False, figsize=(13, 8)) numberOfLabels = len(datingLabels) LabelsColors = [] for i in datingLabels: if i == 1: LabelsColors.append('black') if i == 2: LabelsColors.append('orange') if i == 3: LabelsColors.append('red') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5 axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',fontproperties=font) axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',fontproperties=font) axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占比',fontproperties=font) plt.setp(axs0_title_text, size=9, weight='bold', color='red') plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',fontproperties=font) axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',fontproperties=font) axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',fontproperties=font) plt.setp(axs1_title_text, size=9, weight='bold', color='red') plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',fontproperties=font) axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',fontproperties=font) axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',fontproperties=font) plt.setp(axs2_title_text, size=9, weight='bold', color='red') plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black') #设置图例 didntLike = mlines.Line2D([], [], color='black', marker='.', markersize=6, label='didntLike') smallDoses = mlines.Line2D([], [], color='orange', marker='.', markersize=6, label='smallDoses') largeDoses = mlines.Line2D([], [], color='red', marker='.', markersize=6, label='largeDoses') #添加图例 axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses]) axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses]) axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses]) #显示图片 #print(plt.show()) plt.show() #t.render() """ 函数说明:对数据进行归一化 Parameters: dataSet - 特征矩阵 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 Modify: 2017-03-24 """ def autoNorm(dataSet): #获得数据的最小值 minVals = dataSet.min(0) maxVals = dataSet.max(0) #最大值和最小值的范围 ranges = maxVals - minVals #shape(dataSet)返回dataSet的矩阵行列数 normDataSet = np.zeros(np.shape(dataSet)) #返回dataSet的行数 m = dataSet.shape[0] #原始值减去最小值 normDataSet = dataSet - np.tile(minVals, (m, 1)) #除以最大和最小值的差,得到归一化数据 normDataSet = normDataSet / np.tile(ranges, (m, 1)) #返回归一化数据结果,数据范围,最小值 return normDataSet, ranges, minVals """ 函数说明:分类器测试函数 取百分之十的数据作为测试数据,检测分类器的正确性 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ def datingClassTest(): #打开的文件名 filename = "datingTestSet.txt" #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中 datingDataMat, datingLabels = file2matrix(filename) #取所有数据的百分之十 hoRatio = 0.10 #数据归一化,返回归一化后的矩阵,数据范围,数据最小值 normMat, ranges, minVals = autoNorm(datingDataMat) #获得normMat的行数 m = normMat.shape[0] #百分之十的测试数据的个数 numTestVecs = int(m * hoRatio) #分类错误计数 errorCount = 0.0 for i in range(numTestVecs): #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集 classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 4) print("分类结果:%s\t真实类别:%d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("错误率:%f%%" %(errorCount/float(numTestVecs)*100)) """ 函数说明:通过输入一个人的三维特征,进行分类输出 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ def classifyPerson(): #输出结果 resultList = ['讨厌','有些喜欢','非常喜欢'] #三维特征用户输入 precentTats = float(input("玩视频游戏所耗时间百分比:")) ffMiles = float(input("每年获得的飞行常客里程数:")) iceCream = float(input("每周消费的冰激淋公升数:")) #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) #训练集归一化 normMat, ranges, minVals = autoNorm(datingDataMat) #生成NumPy数组,测试集 inArr = np.array([ffMiles, precentTats, iceCream]) #测试集归一化 norminArr = (inArr - minVals) / ranges #返回分类结果 classifierResult = classify0(norminArr, normMat, datingLabels, 3) #打印结果 print("你可能%s这个人" % (resultList[classifierResult-1])) """ 函数说明:main函数 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ ''' if __name__ == '__main__': datingClassTest() filename = "datingTestSet.txt" datingDataMat, datingLabels = file2matrix(filename) print(datingDataMat) print(datingLabels) #print(np.array(datingLabels,'\n')) #plt.show(datingDataMat, datingLabels) showdatas(datingDataMat, datingLabels) #plt.show() ''' if __name__ == '__main__': resultList = ['讨厌', '有些喜欢', '非常喜欢'] filename = "datingTestSet.txt" datingDataMat, datingLabels = file2matrix(filename) normDataSet, ranges, minVals = autoNorm(datingDataMat) # 取数据集的10%作为测试集 hoRatio = 0.10 m = normDataSet.shape[0] numTestVecs = int(m * hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normDataSet[i, :], normDataSet[numTestVecs:m, :], datingLabels[numTestVecs:m], 4) print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("错误率:%f%%" % (errorCount / float(numTestVecs) * 100)) showDatas(datingDataMat, datingLabels)