SparkStreaming与Kafka整合

1.3 SparkStreaming与Kafka整合

1.3.1 整合简述
kafka是做消息的缓存,数据和业务隔离操作的消息队列,而sparkstreaming是一款准实时流式计算框架,所以二者的整合,是大势所趋。
​
二者的整合,有主要的两大版本。

SparkStreaming与Kafka整合_第1张图片

kafka作为一个实时的分布式消息队列,实时的生产和消费消息,在实际开发中Spark Streaming经常会结合Kafka来处理实时数据。Spark Streaming 与 kafka整合需要引入spark-streaming-kafka.jar,该jar根据kafka版本有2个分支,分别是spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10。jar包分支选择原则:

  • 0.10.0>kafka版本>=0.8.2.1,选择 08 接口

  • kafka版本>=0.10.0,选择 010 接口

sparkStreaming和Kafka整合一般两种方式:Receiver方式和Direct方式

Receiver方式(介绍)

Receiver方式基于kafka的高级消费者API实现(高级优点:高级API写起来简单;不需要去自行去管理offset,系统通过zookeeper自行管理;不需要管理分区,副本等情况,系统自动管理;消费者断线会自动根据上一次记录在 zookeeper中的offset去接着获取数据;高级缺点:不能自行控制 offset;不能细化控制如分区、副本、zk 等)。Receiver从kafka接收数据,存储在Executor中,Spark Streaming 定时生成任务来处理数据。

SparkStreaming与Kafka整合_第2张图片

默认配置的情况,Receiver失败时有可能丢失数据。如果要保证数据的可靠性,需要开启预写式日志,简称WAL(Write Ahead Logs,Spark1.2引入),只有接收到的数据被持久化之后才会去更新Kafka中的消费位移。接收到的数据和WAL存储位置信息被可靠地存储,如果期间出现故障,这些信息被用来从错误中恢复,并继续处理数据。

还有几个需要注意的点:

  • 在Receiver的方式中,Spark中的 partition 和 kafka 中的 partition 并不是相关的,如果加大每个topic的partition数量,仅仅是增加线程来处理由单一Receiver消费的主题。但是这并没有增加Spark在处理数据上的并行度;

  • 对于不同的 Group 和 Topic 可以使用多个 Receiver 创建不同的Dstream来并行接收数据,之后可以利用union来统一成一个Dstream;

  • 如果启用了Write Ahead Logs复制到文件系统如HDFS,那么storage level需要设置成 StorageLevel.MEMORY_AND_DISK_SER,也就是:KafkaUtils.createStream(..., StorageLevel.MEMORY_AND_DISK_SER)

  • WAL将接收的数据备份到HDFS上,保证了数据的安全性。但写HDFS比较消耗性能,另外要在备份完数据之后还要写相关的元数据信息,这样总体上增加job的执行时间,增加了任务执行时间;

  • 总体上看 Receiver 方式,不适于生产环境;

1.3.2  Direct的方式
Direct方式从Spark1.3开始引入的,通过 KafkaUtils.createDirectStream 方法创建一个DStream对象,Direct方式的结构如下图所示。

SparkStreaming与Kafka整合_第3张图片

Direct 方式特点如下:

  • 对应Kafka的版本 0.8.2.1+

  • Direct 方式

  • Offset 可自定义

  • 使用kafka低阶API

  • 底层实现为KafkaRDD

该方式中Kafka的一个分区与Spark RDD对应,通过定期扫描所订阅Kafka每个主题的每个分区的最新偏移量以确定当前批处理数据偏移范围。与Receiver方式相比,Direct方式不需要维护一份WAL数据,由Spark Streaming程序自己控制位移的处理,通常通过检查点机制处理消费位移,这样可以保证Kafka中的数据只会被Spark拉取一次

  • 引入依赖


    org.apache.spark
    spark-streaming-kafka-0-10_2.12
    3.1.2
  • 模拟kafka生产数据

package com.qianfeng.sparkstreaming
​
import java.util.{Properties, Random}
​
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
​
/**
 * 向kafka中test主题模拟生产数据;;;也可以使用命令行生产:kafka-console-producer.sh --broker-list qianfeng01:9092,hadoop02:9092,hadoop03:9092 -topic test
 */
object Demo02_DataLoad2Kafka {
  def main(args: Array[String]): Unit = {
    val prop = new Properties()
    //提供Kafka服务器信息
    prop.put("bootstrap.servers","qianfeng01:9092")
    //指定响应的方式
    prop.put("acks","all")
    //请求失败重试的次数
    prop.put("retries","3")
    //指定key的序列化方式,key是用于存放数据对应的offset
    prop.put("key.serializer",
      "org.apache.kafka.common.serialization.StringSerializer")
    //指定value的序列化方式
    prop.put("value.serializer",
      "org.apache.kafka.common.serialization.StringSerializer")
    //创建producer对象
    val producer = new KafkaProducer[String,String](prop)
    //提供一个数组,数组中数据
    val arr = Array(
      "hello tom",
      "hello jerry",
      "hello dabao",
      "hello zhangsan",
      "hello lisi",
      "hello wangwu",
    )
    //提供一个随机数,随机获取数组中数据向kafka中进行发送存储
    val r = new Random()
    while(true){
      val message = arr(r.nextInt(arr.length))
      producer.send(new ProducerRecord[String,String]("test",message))
      Thread.sleep(r.nextInt(1000))   //休眠1s以内
    }
  }
}
  • 实时消费kafka数据

package com.qianfeng.sparkstreaming
​
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
​
​
/**
 * sparkStreaming消费Kafka中的数据
 */
object Demo03_SparkStreamingWithKafka {
  def main(args: Array[String]): Unit = {
    //1.创建SparkConf对象
    val conf = new SparkConf()
      .setAppName("SparkStreamingToKafka")
      .setMaster("local[*]")
    //2.提供批次时间
    val time = Seconds(5)
    //3.提供StreamingContext对象
    val sc = new StreamingContext(conf, time)
    //4.提供Kafka配置参数
    val kafkaConfig = Map[String, Object](
      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "qianfeng01:9092",
      ConsumerConfig.GROUP_ID_CONFIG -> "qianfeng",
      "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
      "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
    )
    //5.读取Kafka中数据信息生成DStream
    val value = KafkaUtils.createDirectStream(sc,
      //本地化策略:将Kafka的分区数据均匀的分配到各个执行Executor中
      LocationStrategies.PreferConsistent,
      //表示要从使用kafka进行消费【offset谁来管理,从那个位置开始消费数据】
      ConsumerStrategies.Subscribe[String, String](Set("test"), kafkaConfig)
    )
    //6.将每条消息kv获取出来
    val line: DStream[String] = value.map(record => record.value())
    //7.开始计算操作
    line.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _).print()
    //line.count().print()   //每隔5s的数据条数
    //8.开始任务
    sc.start()
    sc.awaitTermination()
  }
}
  • 说明

    1. 简化的并行性:不需要创建多个输入Kafka流并将其合并。 使用directStream,Spark Streaming将创建与使用Kafka分区一样多的RDD分区,这些分区将全部从Kafka并行读取数据。 所以在Kafka和RDD分区之间有一对一的映射关系。

    2. 效率:在第一种方法中实现零数据丢失需要将数据存储在预写日志中,这会进一步复制数据。这实际上是效率低下的,因为数据被有效地复制了两次:一次是Kafka,另一次是由预先写入日志(WriteAhead Log)复制。这个第二种方法消除了这个问题,因为没有接收器,因此不需要预先写入日志。只要Kafka数据保留时间足够长。

    3. 正好一次(Exactly-once)的语义:第一种方法使用Kafka的高级API来在Zookeeper中存储消耗的偏移量。传统上这是从Kafka消费数据的方式。虽然这种方法(结合提前写入日志)可以确保零数据丢失(即至少一次语义),但是在某些失败情况下,有一些记录可能会消费两次。发生这种情况是因为Spark Streaming可靠接收到的数据与Zookeeper跟踪的偏移之间的不一致。因此,在第二种方法中,我们使用不使用Zookeeper的简单Kafka API。在其检查点内,Spark Streaming跟踪偏移量。这消除了Spark Streaming和Zookeeper/Kafka之间的不一致,因此Spark Streaming每次记录都会在发生故障的情况下有效地收到一次。为了实现输出结果的一次语义,将数据保存到外部数据存储区的输出操作必须是幂等的,或者是保存结果和偏移量的原子事务。

Guff_hys_python数据结构,大数据开发学习,python实训项目-CSDN博客

你可能感兴趣的:(linq,c#,spark,大数据,分布式,开发语言,kafka)