- 基于python的ansys_基于python的感知机
weixin_39687990
基于python的ansys
一、1、感知机可以描述为一个线性方程,用python的伪代码可表示为:sum(weight_i*x_i)+bias->activation#activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入2、定义激活函数f:deffunc_activator(
- 部分激活函数可视化
Keyshal_Wei
python机器学习开发语言
importnumpyasnpimportmatplotlib.pyplotasplt#定义激活函数defsigmoid(x):return1/(1+np.exp(-x))deftanh(x):returnnp.tanh(x)defrelu(x):returnnp.maximum(0,x)defleaky_relu(x,alpha=0.01):returnnp.where(x>0,x,alpha*
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 神经网络完成训练的详细过程
每天五分钟玩转人工智能
神经网络人工智能深度学习pytorch机器学习优化算法包括梯度下降法
神经网络完成训练的详细过程一、神经网络的基本概念神经网络是一种模拟人脑神经系统的计算模型,由大量的神经元(节点)和它们之间的连接(权重)组成。神经元接收输入信号,通过加权求和和激活函数的处理,产生输出信号。这些输出信号又可以作为其他神经元的输入,从而形成一个复杂的网络结构。神经网络的训练过程就是调整这些权重和偏置(每个神经元除了有权重外,还有一个偏置项,用于调整输出的阈值),使得网络的输出能够尽可
- 从Swish到SwiGLU:激活函数的进化与革命,qwen2.5应用的激活函数
KangkangLoveNLP
qwen2.5人工智能算法神经网络机器学习深度学习cnn自然语言处理
swiGLU和RMSNorm1.什么是swiGLUSwiGLU(Swish-GatedLinearUnit)是一种结合了Swish激活函数和GLU(GatedLinearUnit)门控机制的激活函数,广泛应用于现代大型语言模型中1.什么是Swish激活函数1.1Swish激活函数Swish激活函数是一种平滑的、非单调的激活函数,由GoogleBrain团队在2017年提出。它结合了ReLU的非线性
- Simple Baselines for Image Restoration
Adagrad
paper深度学习
Abstract.尽管近年来在图像恢复领域取得了长足的进步,但SOTA方法的系统复杂性也在不断增加,这可能会阻碍对方法的分析和比较。在本文中,我们提出了一个简单的基线,超过了SOTA方法,是计算效率。为了进一步简化基线,我们揭示了非线性激活函数,如Sigmoid、ReLU、GELU、Softmax等是不必要的:它们可以用乘法替换或删除。因此,我们从基线推导出一个非线性激活自由网络,即NAFNet。
- 动手学深度学习V2.0(Pytorch)——10.感知机(激活函数)
吨吨不打野
动手学深度学习pytorchpytorch深度学习机器学习
文章目录1.感知机2.多层感知机2.1异或问题2.2单隐藏层2.3激活函数2.3.1logistics函数/sigmoid激活函数2.3.2tanh函数2.3.3sigmoid函数和tanh函数的异同/优缺点2.3.4relu2.4多类分类2.5多隐藏层3Q&A3.1神经网络中一层的定义是什么3.2感知机无法解决XOR问题,多层感知机虽然可以解决,但是还是被SVM替代是为什么?3.3不同任务的激活
- 卷积神经网络(笔记01)
天行者@
cnn人工智能深度学习
视觉处理三大任务:分类、目标检测、图像分割CNN网络主要有三部分构成:卷积层(ConvolutionalLayer)、池化层(PoolingLayer)和激活函数一、解释卷积层中的偏置项是什么,并讨论在神经网络中引入偏置项的好处。在卷积神经网络(CNN)的卷积层里,卷积操作本质上是输入数据与卷积核(滤波器)进行逐元素相乘再求和的过程。偏置项(Bias)是一个额外的可学习参数,对于每个卷积核而言,都
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 基于PyTorch的深度学习——机器学习3
Wis4e
深度学习机器学习pytorch
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 【ShuQiHere】 解密诺奖得主:约翰·霍普菲尔德与人工神经网络的革命
ShuQiHere
机器学习深度学习
【ShuQiHere】目录引言:跨界的传奇科学家诺贝尔奖的背后:人工神经网络的崛起约翰·霍普菲尔德的开创性工作神经网络的寒冬与突破霍普菲尔德网络的工作原理代码示例:实现霍普菲尔德网络激活函数的出现与神经网络的复兴杰弗里·辛顿的扩展与影响人工神经网络的现实应用总结与未来展望互动时间:你的看法额外资源与延伸阅读引言:跨界的传奇科学家2024年,诺贝尔物理学奖首次颁给了计算机科学家!约翰·霍普菲尔德(
- 神经网络|(十四)|霍普菲尔德神经网络-Hebbian训练
西猫雷婶
人工智能python学习笔记神经网络人工智能深度学习
【1】引言前序学习进程中,除了对基本的神经网络知识进行了学习,还掌握了SOM神经网络原理,文章链接包括且不限于:神经网络|(十一)|神经元和神经网络-CSDN博客神经网络|(十二)|常见激活函数-CSDN博客神经网络|(十三)|SOM神经网络-CSDN博客在此基础上,本篇文章学习一个新的神经网络:霍普菲尔德神经网络。【2】霍普菲尔德神经网络原理霍普菲尔德神经网络和SOM神经网络一样不走寻常路,SO
- 深度学习笔记——神经网络
肆——
深度学习深度学习笔记神经网络人工智能python
本文为在拓尔思智能举办的训练营中学习内容的总结,部分内容摘自百度百科个人在这里推荐一个好用的软件,Trae,主要是免费。人工神经元是人工神经网络的基本单元。模拟生物神经元,人工神经元有1个或者多个输入(模拟多个树突或者多个神经元向该神经元传递神经冲动);对输入进行加权求和(模拟细胞体将神经信号进行积累和树突强度不同);对输入之和使用激活函数计算活性值(模拟细胞体产生兴奋或者抑制);输出活性值并传递
- 深度学习的数学之魂:传统机器学习的超越者
洋葱蚯蚓
机器学习深度学习机器学习人工智能经验分享个人开发数据挖掘
深度学习的数学之魂:传统机器学习的超越者前言第一部分:神经元的数学语言1.1神经元模型的启示1.2激活函数的非线性魔法第二部分:网络结构的层次之美2.1网络结构的多样性2.2层次结构的力量第三部分:图像的力量与直观理解3.1图表与动图的辅助作用3.2直观理解的桥梁第四部分:深度与专业的对话4.1深度学习与传统机器学习的比较4.2专业性强的技术分析第五部分:数学原理的深度剖析5.1神经网络的数学表达
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- 数学建模:MATLAB极限学习机解决回归问题
DesolateGIS
数学建模数学建模matlab开发语言
一、简述极限学习机是一种用于训练单隐层前馈神经网络的算法,由输入层、隐藏层、输出层组成。基本原理:输入层接受传入的样本数据。在训练过程中随机生成从输入层到隐藏层的所有连接权重以及每个隐藏层神经元的偏置值,这些参数在整个训练过程中不会被修改。前向传播:输入数据通过已设定的权重和偏置传递给隐藏层,经过激活函数处理后产生隐藏层的输出。在得到隐藏层输出后,需找到从隐藏层到输出层的最佳权重。隐藏层到输出层的
- pytorch与深度学习随记——AlexNet
黑色的山岗在沉睡
深度学习随记深度学习pytorch人工智能
AlexNet和LeNet的设计理念非常相似,但也存在显著差异:基本结构对比网络深度:AlexNet比LeNet-5要深得多,AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。激活函数:AlexNet使用ReLU而不是sigmoid作为其激活函数,这有助于缓解梯度消失问题并加速训练过程。AlexNet架构的创新点局部响应归一化(LRN):AlexNet引入LRN层,可以创建
- 建筑兔零基础人工智能自学记录34|深度学习与神经网络2
阿克兔
人工智能toto学习人工智能深度学习神经网络
1、人工神经网络ANN从生物课上学到的有关神经元、突触的生物神经网络,被模仿出了简化的人工神经网络(ANN,artificialneuralnetwork)。ANN结构为:输入层、隐藏层、输出层人工神经元:基于生物神经元的数学模型ANN过程:输入---加权求和---激活函数激活函数:类似生物神经元的阈值,达到阈值输出信号(‘神经网络的万能逼近定理’---两层以上神经网络可以逼近任意函数)2、深度学
- 全过程带你从入门到精通《动手学PyTorch深度学习建模与应用》第二章:2.1-2.3节详解,篇幅超了,缺的后面再补吧
环工人学Python
深度学习pytorch人工智能python机器学习
写在前面:点点关注不迷路,免费的赞和收藏走起来!后续更新第一时间提示哦,每周会更新不同内容,下周更新如何用各种模态的大模型去为你服务,编写代码。在深度学习的世界里,理解基础概念是构建复杂模型的关键。第二章“深度学习基础与PyTorch实现”将帮助我们深入理解深度学习的核心概念,并通过PyTorch实现这些概念。这一章的内容非常重要,因为它不仅涵盖了神经网络的基本原理,还介绍了激活函数、损失函数和优
- 机器幻觉产生的原因
人机与认知实验室
机器学习人工智能
机器幻觉是指模型生成的不符合现实的内容,比如图像生成中的错误或者不合理的输出。线性函数在神经网络中的作用通常是传递梯度,但如果每一层都是线性的,整个网络就相当于一个单层的线性模型,无法学习复杂的模式。所以如果只有线性层而没有非线性激活函数的话,网络将无法处理复杂任务。对于激活函数而言,常见的如ReLU、sigmoid、tanh。激活函数引入非线性,让网络有能力学习复杂的特征。但是如果没有合适的激活
- 深度学习进阶:构建多层神经网络
孤寂大仙v
深度学习神经网络人工智能
在上一篇文章中,我们从零开始构建了一个简单的两层神经网络,并通过异或问题(XOR)展示了神经网络的强大能力。今天,我们将进一步深入,构建一个更复杂的多层神经网络,并引入更多高级概念,如多隐藏层、激活函数选择、正则化等。我们还会使用更复杂的分类任务来训练模型,并评估其性能。1.多层神经网络的结构在实际应用中,深度学习模型通常包含多个隐藏层,这种结构被称为深度神经网络(DNN)。多层神经网络能够学习更
- 【漫话机器学习系列】106.线性激活函数(Linear Activation Function)
IT古董
漫话机器学习系列专辑机器学习人工智能激活函数
1.什么是线性激活函数?线性激活函数是一种最简单的激活函数,数学表达式为:即输出与输入保持完全线性关系。这意味着对于任何输入值x,其输出将等于输入值本身,函数图像为一条通过原点的直线。在神经网络中,激活函数的作用是将网络的线性组合映射到某种非线性输出。传统的线性激活函数常用于一些特定场景,比如回归问题,其中预测的目标值与输入特征之间可能存在线性关系。2.线性激活函数的特点线性关系:与其他常见的激活
- 深度学习:从神经网络到智能应用
Jason_Orton
深度学习神经网络人工智能机器学习
目录引言一.什么是深度学习?二.深度学习的基本原理1.神经网络的组成2.激活函数3.反向传播(Backpropagation)三.深度学习的常见模型四.深度学习的应用场景五.深度学习的挑战与未来结语引言深度学习(DeepLearning)作为机器学习的一个分支,近年来在人工智能领域取得了革命性的进展。无论是语音识别、图像识别,还是自动驾驶、自然语言处理,深度学习都在推动着技术的发展和行业的变革。那
- GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)
段智华
深入理解ChatGPTChatGPT国内OpenAIGPT-3GPT-4
GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)Gavin大咖微信:NLP_Matrix_Space5.2GPT-2源码实现逐行解析本节讲解GPT-2源码,gpt2.py是一个使用NumPy实现的代码,在代码中实现了GELU激活函数、softmax函数、层归一化、线性层、前馈神经网络、多头自注意力机制、Transformer块、GPT2模型以及文本生成函数,通过
- 浅显介绍图像识别的算法卷积神经网络(CNN)中的激活函数
cjl30804
算法cnn人工智能
激活函数的作用激活函数在神经网络中扮演着至关重要的角色,其主要作用包括但不限于以下几点:引入非线性:如果没有激活函数或仅使用线性激活函数,无论神经网络有多少层或多复杂,整个模型仍然只能表达线性映射。这意味着它无法学习和表示数据中的复杂模式。通过使用非线性的激活函数,如ReLU(修正线性单元)、Sigmoid、Tanh等,可以赋予神经网络学习复杂函数的能力。决定神经元是否被激活:激活函数根据输入信号
- 【CUDA】Pytorch_Extensions
joker D888
深度学习pytorchpythoncudac++深度学习
【CUDA】Pytorch_Extensions为什么要开发CUDA扩展?当我们在PyTorch中实现自定义算子时,通常有两种选择:使用纯Python实现(简单但效率低)使用C++/CUDA扩展(高效但需要编译)对于计算密集型的操作(如神经网络中的自定义激活函数),使用CUDA扩展可以获得接近硬件极限的性能。本文将以实现一个多项式激活函数x²+x+1为例,展示完整的开发流程。完整CUDA扩展代码解
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag