- SVN 安装使用教程
小奇JAVA面试
安装使用教程svn
一、SVN简介SVN(Subversion)是一个流行的集中式版本控制系统,用于跟踪文件的更改历史,常用于软件开发项目的代码管理。虽然Git更加流行,但SVN仍在很多传统企业和大型项目中被广泛使用。二、SVN安装2.1Windows安装(使用TortoiseSVN)下载地址:https://tortoisesvn.net/downloads.html安装后系统右键菜单会添加SVN功能;推荐安装中文
- SVN 简介
SVN简介引言版本控制系统(VersionControlSystem,VCS)是现代软件开发中不可或缺的一部分。它帮助开发者管理代码变更,协作开发,并确保代码的版本控制和历史记录。Subversion(简称SVN)是一种流行的版本控制系统,被广泛应用于各种项目。本文将简要介绍SVN的基本概念、功能特点以及应用场景。什么是SVN?SVN,全称为Subversion,是一个开源的版本控制系统。它由Co
- SVN 启动模式
SVN启动模式引言Subversion(简称SVN)是一种开源的版本控制系统,用于管理源代码和文档。SVN的启动模式是其运行过程中的一个重要环节,它决定了SVN服务器的启动方式和性能。本文将详细介绍SVN的启动模式,帮助读者更好地理解和使用SVN。SVN启动模式概述SVN的启动模式主要有以下几种:standalone模式:使用SVN自带的独立服务器程序启动。inetd模式:通过inetd超级服务器
- 【Prometheus】通过tar包部署单机版Prometheus 和 Pushgateway
在ECS(ElasticComputeService)机器上通过tar包部署Prometheus和Pushgateway,并配置Prometheus采集Pushgateway的数据,是一个常见的监控部署任务。以下是详细的步骤说明:环境准备操作系统:Linux(如CentOS、Ubuntu)已安装tar命名已开通ECS实例的相应端口(9090forPrometheus,9091forPushgate
- day7反转链表&反转链表II替换空格&反转字符串里的单词&左旋转字符串
彬彬小码农
代码随想录链表数据结构java
Java中有很多对字符串封装的操作,本次解题中不调用方法。1.力扣344利用双指针即可解决反转链表,定义一个left指针指向0,right指向nums.length-1,交换后向中间移动,直至left>=right结束解题步骤:定义两个指针,left和right,分别初始化为0和nums.length-1nums【left】和nums【right】交换值,并让左右指针分别向中间移动一步重复循环,直
- 【机器学习笔记 Ⅱ】11 决策树模型
巴伦是只猫
机器学习机器学习笔记决策树
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- 【机器学习笔记Ⅰ】6 多类特征
巴伦是只猫
机器学习机器学习笔记人工智能
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- Simscape入门教程
微小冷
机器人Matlabsimulinksimscape弹簧阻尼multibody
文章目录物理网络连接到Simulink运行本文是官方教程构造物理模型的基本步骤的学习笔记,旨在建立一个带有控制器的质量-弹簧-阻尼系统。物理网络在命令行中输入sscnew,即可弹出Simscape模板,基于此模板即可组建其相应的物理网络。通过添加新模块、删除无关模块,连接其物理网络如下所有模块均在Simscape->FoundationLibrary->Mechanical中,具体包括需要的模块包
- 自学黑客(网络安全),一般人我劝你还是算了吧
网络安全工程师教学
兼职副业网络安全黑客技术web安全安全网络人工智能学习
我是一名8年半的网安工程师“老司机”,要给准备入坑的同学泼盆冷水了,网络安全真的不是一般人能学的。有人会问“你一个8年的网安老司机,为什么还给大家泼冷水”?好多人说:网安基础很简单,是个人稍微认真点都能懂,给网安打上了简单、易懂的标签。然后上来就是一波言论浮夸的输出,把一些很基础很浅显的技术点拆解出来,让小白快速上手,误导新手,让他们以为网络安全就这么回事儿,可一到真正实操,哦豁,啥也不会。这导致
- 徐家骏:我在华为工作十年的感悟 (转)
徐是华为数据中心的头,技术超级牛人,一级部门总监,华为副总裁,年收入过千万,数据中心是用火山岩建的深入地下的一个大型建筑.防辐射,可防卫星的电子,雷达等手段的侦察.里面有象卫星发射中心那种超大屏幕,机房里满是三米的大型服务器和大型计算机.连接整个华为全球的每一台终端,整个华为每天三十多万封邮件,海外和全球的同步研发,内部的信息管理,内部流程,华为的国内国际IP电话都是通过出去.上周,我正式提交了离
- 从小白到进阶:解锁linux与c语言高级编程知识点嵌入式开发的任督二脉(1)
small_wh1te_coder
嵌入式linuxc嵌入式硬件算法c汇编面试linux
【硬核揭秘】Linux与C高级编程:从入门到精通,你的全栈之路!第一部分:初识Linux与环境搭建,玩转软件包管理——嵌入式开发的第一道“坎”嘿,各位C语言的“卷王”们!你可能已经习惯了在Windows或macOS上敲代码,用IDE点点鼠标就能编译运行。但当你踏入嵌入式开发的大门,尤其是涉及到那些跑着Linux系统的“大家伙”(比如树莓派、工控机、智能路由器),你就会发现,一个全新的世界在你面前展
- 30分钟手把手搭建WordPress网站(有服务器优惠)
r***177
服务器运维Wordpress搭建教程网站搭建
bro,今天给你来一个超详细的WordPress搭建教程,从装宝塔面板开始,手把手教你。对了,趁现在雨云有新人活动,用我的专属链接注册还能拿5折券,后面我还会在积分商城发免费券,绝对划算!第一步:安装宝塔面板首先你得有个服务器,我推荐用雨云的,性价比高。用我的链接注册还能拿5折券:点击注册雨云账号,注册后绑定微信直接送5折券!优惠码"lxoffice"也可以直接用,但点链接更方便。装宝塔面板很简单
- 数据仓库技术及应用(Hive 产生背景与架构设计,存储模型与数据类型)
娟恋无暇
数据仓库笔记hive
1.Hive产生背景传统Hadoop架构存在的一些问题:MapReduce编程必须掌握Java,门槛较高传统数据库开发、DBA、运维人员学习门槛高HDFS上没有Schema的概念,仅仅是一个纯文本文件Hive的产生:为了让用户从一个现有数据基础架构转移到Hadoop上现有数据基础架构大多基于关系型数据库和SQL查询Facebook诞生了Hive2.Hive是什么官网:https://hive.ap
- OpenCV 图像操作:颜色识别、替换与水印添加
目录引言代码实现1.导入必要的库2.图像加法3.图像直接相加4.颜色加权加法5.HSV颜色空间转换概念作用6.查找颜色范围对应的像素点7.与运算-生成掩膜8.添加水印9.主函数总结引言在计算机视觉领域,OpenCV是一个强大的库,提供了丰富的图像操作功能。本文将详细介绍如何使用OpenCV进行图像加法、颜色加权加法、HSV颜色空间转换、颜色范围查找、与运算生成掩膜以及添加水印等操作,并给出相应的P
- 企业级视频链接的技术实现与安全性策略
前言视频链接作为内容分发的关键入口,其参数设计直接影响系统安全性、用户体验和运营效率。一个标准化的视频链接应包含资源标识、访问控制和播放体验三类核心参数,同时保持结构清晰和可扩展性。视频链接的批量生成与管理策略1.高效批量生成技术针对运营场景的批量链接生成需求,实现高性能的生成方案:importcsvimportconcurrent.futuresfromtqdmimporttqdmclassBa
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 在Windows上构建本地服务器实现Augment团队邀请额度自动化增长的技术探索
yangshuo1281
windows服务器自动化
自动化:摘要:随着AI编码助手在开发领域日益普及,如何最大化利用这些工具的免费额度成为了许多开发者关心的话题。本文将以Augment为例,深入探讨一个技术爱好者的“极限挑战”:在Windows操作系统上,从零开始搭建一个本地全栈Web应用,以自动化方式完成团队邀请流程,从而实现免费使用额度的增长。本文不仅是一份操作指南,更是一次关于API交互、Web自动化、前后端开发的深度技术实践。在文章的最后,
- 大模型RLHF强化学习笔记(二):强化学习基础梳理Part2
Gravity!
大模型笔记大模型LLM强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.4强化学习分类根据数据来源划分Online:智能体与环境实时交互,如Q-Learning、SARSA、Actor-CriticOffline:智能体使用预先收集的数据集进行学习根据策略更新划分On-Policy:学习和行为策略是相同的,数据是按照当前策略生成的,如SARSAOff-Policy:学习策
- 【Python】python_jwt
宅男很神经
python开发语言
1.1传统会话(Session)机制的黄金时代与黄昏在Web应用的黎明时期,身份验证的范式几乎完全由**基于服务器端会话(Session-BasedAuthentication)**的机制所主导。这是一个直观且在单体应用时代极其有效的模型,其工作流程如同一场精密的双人舞:凭证交换与“储物柜钥匙”的签发:用户在登录页面输入用户名和密码。这些凭证被发送到服务器。服务器验证其有效性后,会在自己的“储物间
- 【Python】simulink与python联合仿真
1.1Simulink的边界:事件驱动、算法复杂性与AI集成瓶颈Simulink的核心优势在于其强大的微分方程求解器和对连续时间系统、离散时间系统的精确描述能力。其基于“信号流”和“框图”的建模范式,使得工程师可以直观地构建与物理现实高度对应的数学模型。然而,这种优势也带来了其天然的局限性:基于时间的驱动核心(Time-BasedCoreEngine):Simulink的“心脏”是一个时间驱动的仿
- go-carbon v2.6.10发布,轻量级、语义化、对开发者友好的 golang 时间处理库
gocarbontime
carbon是一个轻量级、语义化、对开发者友好的Golang时间处理库,提供了对时间穿越、时间差值、时间极值、时间判断、星座、星座、农历、儒略日/简化儒略日、波斯历/伊朗历的支持。carbon目前已捐赠给dromara开源组织,已被awesome-go收录,并获得gitee2024年最有价值项目(GVP)和gitcode2024年度G-Star项目,如果您觉得不错,请给个star吧官网:carbo
- 【前端工程化】前端组件模版构建那些事
前端
在企业级后台系统中,组件是构建页面的基础单元。与C端不同,B端更注重功能完整性、交互一致性与复用效率。因此,我们需要围绕业务场景封装出可复用、易维护、结构清晰的组件模板。本文档主要围绕组件设计原则、分类建议和使用方式展开,适用于Vue或React技术栈下的开发场景。一、组件设计原则职责单一每个组件只负责一个功能或UI元素,不依赖外部状态;示例:按钮组件只处理点击行为,不包含API调用逻辑;高内聚低
- 这是gpt o1给出的物联网工程专业的大学规划,有人看看这个合理吗?
王倚山
gpt物联网学习开发语言
下面是一份更为详细、覆盖全年(包括寒暑假)的四阶段学习规划,旨在帮助你在大学剩余时间里持续学习、循序渐进地掌握物联网(IoT)核心技能,打造深厚的技术壁垒。每个阶段都有明确的学习目标与自学内容细节,并在寒暑假安排了“强化期”任务,让你全年不停歇,不断提升。总体思路稳扎稳打:从嵌入式基础到RTOS、传感器驱动、通信协议,再到边缘计算、云平台、工业协议、安全攻防,层层深入。项目驱动:每个阶段至少完成1
- Python知识点:如何使用memory_profiler进行内存分析
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用memory_profiler进行Python代码内存分析在开发高性能的Python应用程序时,理解和优化内存使用是至关重要的。memory_profiler是一个强大的工具,它可以帮助你监控Python代码的内存使用情况。本文将介绍如何使用memory_profiler来分
- Linux基础第5天-:Vim编译器的常用指令
今天也好累
linuxvim运维笔记学习编辑器服务器
光标移动(了解)行间移动gg键:移动光标到第一行(命令模式下)G键:移动光标到最后一行(命令模式下):n:移动到第n行,:6(移动到第6行)(末行模式下)列间移动$键:移动光标到当前行的行尾(最后一列),一般可以使用Shift+$(命令模式下)0键:移动光标到当前行的行首(第一列)(命令模式下)方向键↑↓上下实现行间移动,←→左右实现列间移动删除(重点)列删除x键:删除当前光标所在出的一个字符(命
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f