基本上来说传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持, 这里不会从头讲解 SQL 语法只介绍 ClickHouse 与标准 SQL(MySQL)不一致的地方。
SQL(MySQL)基本一致
(1)标准
insert into [table_name] values(…),(….)
(2)从表到表的插入
insert into [table_name] select a,b,c from [table_name_2]
ClickHouse 提供了 Delete 和 Update 的能力,这类操作被称为 Mutation 查询,它可以看 做 Alter 的一种。
虽然可以实现修改和删除,但是和一般的 OLTP 数据库不一样,Mutation 语句是一种很 “重”的操作,而且不支持事务。
“重”的原因主要是每次修改或者删除都会导致放弃目标数据的原有分区,重建新分区。 所以尽量做批量的变更,不要进行频繁小数据的操作。
(1)删除操作
alter table t_order_smt delete where sku_id ='sku_001';
(2)修改操作
alter table t_order_smt update total_amount=toDecimal32(2000.00,2) where id =102;
由于操作比较“重”,所以 Mutation 语句分两步执行,同步执行的部分其实只是进行 新增数据新增分区和并把旧分区打上逻辑上的失效标记。直到触发分区合并的时候,才会删 除旧数据释放磁盘空间,一般不会开放这样的功能给用户,由管理员完成。
ClickHouse 基本上与标准 SQL 差别不大
➢ 支持子查询
➢ 支持 CTE(Common Table Expression 公用表表达式 with 子句)
➢ 支持各种 JOIN,但是 JOIN 操作无法使用缓存,所以即使是两次相同的 JOIN 语句, ClickHouse 也会视为两条新 SQL
➢ 窗口函数(官方正在测试中...)
➢ 不支持自定义函数
➢ GROUP BY 操作增加了 with rollup\with cube\with total 用来计算小计和总计。
(1)插入数据
hadoop102 :) alter table t_order_mt delete where 1=1;
insert into t_order_mt values
(101,'sku_001',1000.00,'2020-06-01 12:00:00'),
(101,'sku_002',2000.00,'2020-06-01 12:00:00'),
(103,'sku_004',2500.00,'2020-06-01 12:00:00'),
(104,'sku_002',2000.00,'2020-06-01 12:00:00'),
(105,'sku_003',600.00,'2020-06-02 12:00:00'),
(106,'sku_001',1000.00,'2020-06-04 12:00:00'),
(107,'sku_002',2000.00,'2020-06-04 12:00:00'),
(108,'sku_004',2500.00,'2020-06-04 12:00:00'),
(109,'sku_002',2000.00,'2020-06-04 12:00:00'),
(110,'sku_003',600.00,'2020-06-01 12:00:00');
(2)with rollup:从右至左去掉维度进行小计
hadoop102 :) select id , sku_id,sum(total_amount) from t_order_mt group by id,sku_id with rollup;
(3)with cube : 从右至左去掉维度进行小计,再从左至右去掉维度进行小计
hadoop102 :) select id , sku_id,sum(total_amount) from t_order_mt group by id,sku_id with cube;
(4)with totals: 只计算合计
hadoop102 :) select id , sku_id,sum(total_amount) from t_order_mt group by id,sku_id with totals;
同 MySQL 的修改字段基本一致
1)新增字段
alter table tableName add column newcolname String after col1;
2)修改字段类型
alter table tableName modify column newcolname String;
3)删除字段
alter table tableName drop column newcolname;
clickhouse-client --query "select * from t_order_mt where create_time='2020-06-01 12:00:00'" --format CSVWithNames> /opt/module/data/rs1.csv
更多支持格式参照:
Input and Output Formats | ClickHouse Documentation