Sklearn中LabelEncoder与OneHotEncoder的用法和区别

LabelEncoder()

简单来说 LabelEncoder 是对不连续的数字或者文本进行编号
```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])
 
array([0,0,3,2,1])
```

OneHotEncoder()

OneHotEncoder 用于将表示分类的数据扩维:
   from sklearn.preprocessing import OneHotEncoder
   ohe = OneHotEncoder()
   ohe.fit([[1],[2],[3],[4]])
   ohe.transform([2],[3],[1],[4]).toarray()
    
   [[0,1,0,0], [0,0,1,0], [1,0,0,0], [0,0,0,1]] 

你可能感兴趣的:(机器学习)