- ARM嵌入式可编程控制器技术开发
拉勾科研工作室
arm开发
PLC自动化设计|毕业设计指导|工业自动化解决方案✨专业领域:PLC程序设计与调试工业自动化控制系统HMI人机界面开发工业传感器应用电气控制系统设计工业网络通信擅长工具:西门子S7系列PLC编程三菱/欧姆龙PLC应用触摸屏界面设计电气CAD制图工业现场总线技术自动化设备调试主要内容:PLC控制系统设计工业自动化方案规划电气原理图绘制控制程序编写与调试毕业论文指导毕业设计题目与程序设计✅具体问题可以
- 霍夫变换(Hough Transform)算法原来详解和纯C++代码实现以及OpenCV中的使用示例
点云SLAM
算法图形图像处理算法opencv图像处理与计算机视觉算法直线提取检测目标检测霍夫变换算法
霍夫变换(HoughTransform)是一种经典的图像处理与计算机视觉算法,广泛用于检测图像中的几何形状,例如直线、圆、椭圆等。其核心思想是将图像空间中的“点”映射到参数空间中的“曲线”,从而将形状检测问题转化为参数空间中的峰值检测问题。一、霍夫变换基本思想输入:边缘图像(如经过Canny边缘检测)输出:一组满足几何模型的形状(如直线、圆)关键思想:图像空间中的一个点→参数空间中的一个曲线参数空
- 基于Python的Google Scholar学术论文爬虫实战:最新技术与完整代码解析
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言学习scrapy
摘要本文详细介绍如何使用Python构建一个高效的GoogleScholar爬虫系统,包括代理设置、反反爬策略、数据解析与存储等核心技术。文章涵盖最新Python爬虫技术栈(如Playwright、异步IO等),提供完整可运行的代码示例,并讨论学术爬虫的伦理与法律问题。通过本教程,读者将掌握从GoogleScholar批量获取学术论文信息的高级爬虫技术。关键词:Python爬虫、GoogleSch
- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- [论文阅读]Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smal
0x211
论文阅读语言模型人工智能自然语言处理
中文译名:逐步蒸馏!以较少的训练数据和较小的模型规模超越较大的语言模型发布链接:http://arxiv.org/abs/2305.02301AcceptedtoFindingsofACL2023阅读原因:近期任务需要用到蒸馏操作,了解相关知识核心思想:改变视角。原来的视角:把LLMs视为噪声标签的来源。现在的视角:把LLMs视为能够推理的代理。方法好在哪?需要的数据量少,得到的结果好。文章的方法
- MATLAB实现快速非局部均值图像去噪方法
一只爪子
本文还有配套的精品资源,点击获取简介:非局部均值滤波是一种先进的图像去噪技术,与传统方法相比,它利用图像的全局信息来去除噪声,同时保持图像细节。该算法通过搜索和利用整个图像中相似的像素块,对每个像素点进行去噪处理。本文提供的MATLAB代码FAST_NLM_II.m实现此算法,并包含必要的参数设置、相似性计算、加权平均和图像更新步骤。了解并应用此代码是学习和进一步改进非局部均值滤波技术的基础。1.
- python+springboot+vue的音乐系统
QQ_511008285
pythonspringbootvue.jsdjangoflasknode.jsphp
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- python基于Hadoop的NBA球员大数据分析与可视化系统
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- 基于 Python 的图书管理系统(源码)
摘要:本论文详细阐述了利用Python语言开发一个简易图书管理系统的过程。该系统具备图书信息录入、删除、修改、查询以及借阅管理等核心功能,可有效提升图书管理的效率与便捷性。通过阐述系统的需求分析、设计思路、代码实现及测试过程,展示了Python在小型管理系统开发中的应用潜力,为相关领域的软件开发提供了有益参考。关键词:Python编程;图书管理系统;数据结构;代码实现一、引言(一)研究背景随着数字
- 【EGSR2025】材质+扩散模型+神经网络相关论文整理随笔(四)
Superstarimage
文献随笔材质神经网络人工智能扩散模型
AnevaluationofSVBRDFPredictionfromGenerativeImageModelsforAppearanceModelingof3DScenes输入3D场景的几何和一张参考图像,通过扩散模型和SVBRDF预测器获取多视角的材质maps,这些maps最终合并成场景的纹理地图集,并支持在任意视角、任意光照条件下进行重新渲染。样例图如下:在当前时代的技术背景下,生成与几何匹配
- 超越RAG的搜索革命!分层框架让AI像专家团队一样深度思考
Python_金钱豹
人工智能深度学习网络知识图谱大数据
❝一句话概括:与其训练一个越来越大的“六边形战士”AI,不如组建一个各有所长的“复仇者联盟”,这篇论文就是那本“联盟组建手册”。(原论文题目见文末,点击阅读原文可直接跳转至原文链接,Publishedonarxivon03Jul2025,byRenminUniversityofChina)*第一阶段:核心思想概览**论文的动机*在面对“未来的家庭娱乐会是什么样?”或“结合最新的财报和市场趋势,分析
- OpenCV图片操作100例:从入门到精通指南(1)
总有刁民想爱朕ha
opencv计算机视觉人工智能
OpenCV图片操作100例:从入门到精通指南本文整理了100个OpenCV实用技巧,涵盖图像处理各个领域,助你轻松掌握计算机视觉核心技能!一、入门必备:基础操作1.图像读写与显示importcv2#读取图像(BGR格式)img=cv2.imread('image.jpg')#显示图像cv2.imshow('示例图片',img)cv2.waitKey(0)#按任意键退出cv2.destroyAll
- OpenCV图片操作100例:从入门到精通指南(3)
总有刁民想爱朕ha
opencv人工智能计算机视觉
高效学习路径:1️⃣分阶段学习:入门:1-20例(基础操作)进阶:21-50例(图像处理)高级:51-100例(计算机视觉)2️⃣项目驱动学习:证件照背景替换(1-15例)停车场车位检测(30-45例)视频运动追踪(70-85例)3️⃣性能优化技巧:#使用UMat加速图像处理umat_img=cv2.UMat(img)processed=cv2.GaussianBlur(umat_img,(5,5
- OpenCV入门到精通:AI视觉处理的完整指南
AI云原生与云计算技术学院
人工智能opencv计算机视觉ai
OpenCV入门到精通:AI视觉处理的完整指南关键词:OpenCV、计算机视觉、图像预处理、目标检测、AI视觉应用摘要:本文是一份面向AI视觉爱好者的OpenCV完整学习指南。从OpenCV的核心概念讲起,结合生活案例、代码示例和项目实战,逐步拆解图像读取/显示、灰度化、边缘检测、目标检测等关键技术。无论你是想入门计算机视觉的新手,还是希望用OpenCV解决实际问题的开发者,都能通过本文掌握从理论
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- OpenCV入门到精通:从基础到实战的全面指南
摘要:本文旨在为初学者和有一定经验的开发者提供OpenCV从入门到精通的全面指南。文章首先介绍了OpenCV的基本概念和安装方法,然后深入讲解了图像处理基础、特征检测与匹配、视频处理与分析等核心内容,最后通过实战案例展示了OpenCV在计算机视觉任务中的应用。关键词:OpenCV;图像处理;特征检测;视频分析;实战案例引言OpenCV(OpenSourceComputerVisionLibrary
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 计算机科学期刊介绍--各种杂志投稿方式与评价
狮子小宝
做研究写论文transactions工作email出版数据库自然语言处理
一、计算机科学期刊介绍计算机科学的publication最大特点在于:极度重视会议,而期刊则通常只用来做re-publication。大部分期刊文章都是会议论文的扩展版,首发就在期刊上的相对较少。也正因为如此,计算机期刊的影响因子都低到惊人的程度,顶级刊物往往也只有1到2左右----被引的通常都是会议版论文,而不是很久以后才出版的期刊版。因此,要讨论计算机科学的publication,首先必须强调
- 【大家的项目】helyim: 纯 Rust 实现的分布式对象存储系统
helyim是使用rust重写的seaweedfs,具体架构可以参考Facebook发表的haystack和f4论文。主要设计目标为:精简文件元数据信息,去掉对象存储不需要的POSIX语义(如文件权限)小文件合并成大文件,从而减小元数据数,使其完全存在内存中,以省去获取文件元数据的磁盘IO支持地域容灾,包括IDC容灾和机架容灾架构简单,易于实现和运维支持的特性:支持使用Http的文件上传,下载,删
- Python:列表切片允许“后边小于左边”吗?
目录1问题2测试3欢迎纠错4论文写作/Python学习智能体1问题 在Python中,列表切片允许“后边小于左边”吗?2测试 在Python中,列表切片允许“后边小于左边”,此时会返回一个空列表,不会报错。 例如:lst=[1,2,3,4,5]print(lst[3:1])#输出:[] 这是因为,当切片的结束索引小于开始索引,且步长为默认的1(正数)时,Python认为没有符合条件的元素,
- 【论文复现】Taylor算法用于TOA(到达时间)的三维标签位置解算,360个标签、12个基站的环境作为验证,附MATLAB例程
MATLAB卡尔曼
论文复现算法matlab开发语言
本文给出论文《基于Taylor-Chan算法的改进UWB室内三维定位方法》中的Taylor算法来解算TOA的复现程序(MATLAB)。使用论文中给定的12个锚点/360个测试的标签用来测试算法性能文章目录运行结果程序介绍核心功能概述结果输出应用场景MATLAB源代码运行结果误差输出:程序介绍本程序基于Taylor迭代算法,实现了对三维空间内360个目标点的TOA(TimeofArrival)定位解
- 论文-算法-伪代码-1
youngfengying
算法
伪代码(Pseudocode)是一种算法描述语言。使用伪代码的目的是为了使被描述的算法可以容易地以任何一种编程语言。伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。介于自然语言与编程语言之间。例子:主要规定:1)算法中出现的数组、变量可以是以下类型:整数、实数、字符、位串或指针。通常这些类型可以从算法的上下文来看是清楚的,并不需要额外加以说明。2)在算法中的某些指令或子任务可以用文字来叙
- 深度学习交互式图像分割技术演进与突破
wang1776866571
深度学习交互式分割深度学习人工智能交互式分割
说明本文为作者读研期间基于交互式图像分割领域公开文献的系统梳理与个人理解总结,所有内容均为原创撰写(ai辅助创作),未直接复制或抄袭他人成果。文中涉及的算法、模型及实验结论均参考自领域内公开发表的学术论文(具体文献见文末参考文献列表)。本文旨在为交互式图像分割领域的学习者提供一份结构化的综述参考,内容涵盖技术演进、核心方法、关键技术优化及应用前景,希望能为相关研究提供启发。摘要:本文系统综述了基于
- 【论文阅读】【IEEE TCYB 2023】Edge-Guided Recurrent Positioning Network forSalient Object Detection in Opt
引言任务:光学遥感图像中显著目标检测论文地址:Edge-GuidedRecurrentPositioningNetworkforSalientObjectDetectioninOpticalRemoteSensingImages|IEEEJournals&Magazine|IEEEXplore代码地址:前置知识一、摘要目前由于光学rsi中目标类型多样、目标尺度多样、目标方向众多以及背景杂乱,现有S
- 计算机专业毕业设计-线上招聘与求职系统的设计与实现-开题报告
苦奢bu咖啡
课程设计毕业论文毕业设计软件开发开题报告求职招聘javaweb
本系统开发采用技术为JSP、Bootstrap、Ajax、Springboot、Java、Tomcat、Maven此文章为开题报告,此系统已开发完成相关文档都很健全,相关的代码+部署+论文+ppt+代码讲解+答辩指导文件都有可私要,为本人亲自指导加编写,禁止任何人抄袭以及各类盈利性传播计算机专业毕业设计任何项目-程序-论文-想单独指导的可以私1、选题的目的和意义。通过开发一个功能全面的线上招聘与求
- 头盔检测数据集和论文
daguantou
人工智能算法
背景据统计使用摩托车头盔可以将道路交通事故中摩托车驾驶员致命伤害的可能性降低42%,尽管如此,遵守摩托车头盔还是较少,尤其是在发展中国家,为了有效开展针对性的头盔使用运动,政府必须收集有关头盔法律遵守程度的详细数据。但40%的国家尚未估算出这一关键的道路安全指标。而且即使有数据可用,头盔使用的观察也常常受到样本量和区域范围的限制,是从相对较短的时间框架中得出的数据,或仅在学术研究范围内单独收集。缺
- 【自动驾驶】经典LSS算法解析——深度估计
IRevers
个人学习笔记自动驾驶算法人工智能深度学习python机器学习
LSS-Lift.Splat,Shoot论文题目:Lift,Splat,Shoot:EncodingImagesFromArbitraryCameraRigsbyImplicitlyUnprojectingto3D代码:https://github.com/nv-tlabs/lift-splat-shoot概括:先做深度估计和特征融合,然后投影到BEV视图中,在BEV视图中做特征融合,在融合后的特
- 【人工智能面经第五期:模型训练与优化核心面试深度问答】
码上有前
PytorchPython深度学习人工智能面试职场和发展
作者:“码上有前”文章简介:人工智能面经欢迎小伙伴们点赞、收藏⭐、留言模型训练与优化核心面试深度问答摘要围绕模型训练与优化的训练技巧(正则化、迁移学习)和数据工程(数据增强、标注质量)展开,通过20个关键问题,解析正则化协同策略、迁移学习适配场景、数据增强实践等核心要点,助力读者掌握人工智能与计算机视觉岗位面试中模型训练优化的知识体系,明晰技术原理与实际应用的关联。目录训练技巧-正则化策略相关问题
- 【氮化镓】p-GaN栅极退化的温度和结构相关性
北行黄金橘
氮化镓器件可靠性人工智能机器学习学习科学研究科技
论文总结:本文献深入研究了带有p-GaN栅极的正常关断型(normally-off)高电子迁移率晶体管(GaN-HEMTs)在恒定电压应力下的时序退化行为。通过直流特性分析和温度依赖性分析,研究了故障时间(TTF)与应力温度和器件几何结构的依赖性。结果显示,p-GaN栅极晶体管在7.2V的栅偏压下可达到20年的使用寿命,表明了良好的稳定性。故障时间与应力电压呈指数关系,且退化主要发生在栅极边缘而非
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟