- 关于提高复杂业务逻辑代码可读性的思考
编程经验分享
开发经验java数据库开发语言
目录前言需求场景常规写法拆分方法领域对象总结前言实际工作中大部分时间都是在写业务逻辑,一般都是三层架构,表示层(Controller)接收客户端请求,并对入参做检验,业务逻辑层(Service)负责处理业务逻辑,一般开发都是在这一层中写具体的业务逻辑。数据访问层(Dao)是直接和数据库交互的,用于查数据给业务逻辑层,或者是将业务逻辑层处理后的数据写入数据库。简单的增删改查接口不用多说,基本上写好一
- MongoDB Oplog 窗口
喝醉酒的小白
MongoDB运维
在MongoDB中,oplog(操作日志)是一个特殊的日志系统,用于记录对数据库的所有写操作。oplog允许副本集成员(通常是从节点)应用主节点上已经执行的操作,从而保持数据的一致性。它是MongoDB副本集实现数据复制的基础。MongoDBOplog窗口oplog窗口是指在MongoDB副本集中,从节点可以用来同步数据的时间范围。这个窗口通常由以下因素决定:Oplog大小:oplog的大小是有限
- 数据仓库——维度表一致性
墨染丶eye
背诵数据仓库
数据仓库基础笔记思维导图已经整理完毕,完整连接为:数据仓库基础知识笔记思维导图维度一致性问题从逻辑层面来看,当一系列星型模型共享一组公共维度时,所涉及的维度称为一致性维度。当维度表存在不一致时,短期的成功难以弥补长期的错误。维度时确保不同过程中信息集成起来实现横向钻取货活动的关键。造成横向钻取失败的原因维度结构的差别,因为维度的差别,分析工作涉及的领域从简单到复杂,但是都是通过复杂的报表来弥补设计
- 高级 ECharts 技巧:自定义图表主题与样式
SnowMan1993
echarts信息可视化数据分析
ECharts是一个强大的数据可视化库,提供了多种内置主题和样式,但你也可以根据项目的设计需求,自定义图表的主题与样式。本文将介绍如何使用ECharts自定义图表主题,以提升数据可视化的吸引力和一致性。1.什么是ECharts主题?ECharts的主题是指定义图表样式的配置项,包括颜色、字体、线条样式等。通过预设主题,你可以快速更改图表的整体风格,而自定义主题则允许你在此基础上进行个性化设置。2.
- Redis:缓存击穿
我的程序快快跑啊
缓存redisjava
缓存击穿(热点key):部分key(被高并发访问且缓存重建业务复杂的)失效,无数请求会直接到数据库,造成巨大压力1.互斥锁:可以保证强一致性线程一:未命中之后,获取互斥锁,再查询数据库重建缓存,写入缓存,释放锁线程二:查询未命中,未获得锁(已由线程一获得),等待一会,缓存命中互斥锁实现方式:redis中setnxkeyvalue:改变对应key的value,仅当value不存在时执行,以此来实现互
- 为了那一个约定
王书朋
我和我的学生说好了,不管遇到什么,都要一起努力,这是我们刚遇见时留下的记忆,到现在刚好一年过去。在本周一,我做了一个简单的询问,想看一看经过一个漫长的假期,还有几个人记得努力,所以我一个人一个人的问下去。我所问的内容,就是你有没有记日记和进行课外阅读,两个班将近一百名学生,在我没有要求的情况下。主要是上个学期我们遇到了特殊情况,还没来得及做出要求,就已经进入了假期,因此阴差阳错,为我制造了检验学生
- 跟着黑马学mysql(5)
小杜不吃糖
mysql数据库
17.DQL-聚合函数DQL-聚合函数介绍将一列数据作为一个整体,进行纵向计算。常见聚合函数函数功能count统计数量max最大值min最小值avg平均值sum求和语法SELECT聚合函数(字段列表)FROM表名;注意:所有的null值不参与聚合函数的运算18.DQL-分组查询语法SELECT字段列表FROM表名[WHERE条件]GROUPBY分组字段名[HAVING分组后的过滤条件];where
- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- Rides实现分布式锁,保障数据一致性,Redisson分布式事务处理
朱杰jjj
缓存分布式
分布式环境下分布式锁有三种方式:基于数据库分布式锁基于Redis分布式锁基于zk分布式锁本帖只介绍Redis分布式锁为什么需要用到分布式锁?在单机环境下一个服务中多个线程对同一个事物或数据资源进行操作时,可以通过添加加锁方式(synchronized和lock)来解决数据一致性的问题。但是如果出现多个服务的情况下,这时候我们在通过synchronized和lock的方式来加锁会出现问题,因为多个服
- 数据库系统 第53节 数据库并发控制
hummhumm
数据库oraclepythonjavadatabasesql后端
数据库并发控制是确保在多个用户或进程同时访问数据库时,数据的完整性和一致性得到维护的一种机制。并发控制技术主要分为两大类:乐观并发控制和悲观并发控制。下面将详细叙述这两种技术,以及多版本并发控制(MVCC),这是一种在数据库系统中广泛使用的并发控制方法。乐观并发控制(OptimisticConcurrencyControl,OCC)乐观并发控制的核心思想是假设事务之间的冲突发生的概率较低,因此它允
- 练就理论联系实际的真功夫
TBC
理论联系实际是中国共产党的三大作风之一,理论从实际中来,要到实际中去。理论不是唯一的真理,理论要在现实中接受实践的检验,才能更好地指导实践,理论脱离实际就会变成一种僵硬的教条,茶杯硬套锅盖,风马牛不相及。理论从实际中来,并接受实践的检验。理论是一种经验总结,是我们的指导手册,引导我们的方向盘,它能指引我们在贯彻落实工作中少走弯路。理论是前人阶段性工作的经验总结,它使得我们能站在“巨人的肩膀”上更为
- Python办公自动化案例(二):对比两个Excel数据内容并标出不同
衍生星球
pythonexcel高阶办公办公自动化
案例:对比两个word文档并找出不同。在数据处理和分析的日常工作中,我们经常需要比较两个Excel文件的差异。这可能是为了验证数据的一致性、检查数据的准确性,或者在版本控制中追踪更改。手动比较这些文件不仅耗时,而且容易出错。幸运的是,Python的openpyxl库提供了一种自动化这一过程的方法。步骤1:安装openpyxl在命令行中输入以下命令来安装pipinstallopenpyxl步骤2:编
- MySQL MHA
pokemon..
mysql数据库
一、MySQLMHA高可用环境概述1.什么是MHAMHA(MasterHighAvailability)是一款用于MySQL数据库集群的高可用解决方案,主要解决MySQL单点故障问题。在MySQL集群的主服务器发生故障时,MHA可以自动执行故障切换,将一个从服务器提升为新的主服务器,最大限度地保证数据的一致性。MHA的切换时间通常在0-30秒之间,极大提高了MySQL集群的可用性。2.MHA的组成
- 2022年技术胖私藏工具分享 300+编程实用工具
wudongyu
2022年技术胖私藏工具分享300+编程实用工具Javascript工具Underscore.js一套完善的函数式编程的接口,更方便地在JavaScript中实现函数式编程https://underscorejs.org/fastclick用于消除物理点击和click移动浏览器上事件触发之间的300毫秒延迟https://github.com/ftlabs/fastclickLodash一致性、模
- 晨语问安2022年1月3日
求索大伟
『晨语问安1.3』实践出真知,实践是检验真理的。实践,毋庸置疑是检验能力、验证自我最有力的工具,而恰恰实践或称为行动,却是自身前行的最大的弱项,借用最亲近的人说我的一句话“不会用剩余生命陪我慢慢变好”,由此可见,执行力在我身上是何其弱小。同时,这与自己一直标榜积极向上的精神状态南辕北辙,越走越远。问题清楚呈现,改变刻不容缓,重点在于执行,绝非和风细雨,而应立竿见影,更要坚持不懈。早安,开心一天。[
- 制衣厂的故事13
记忆里的角落
我们的主任是一位胖美人,她别的本事没有,就会在我们面前摆官腔架子。“L码的衣服是谁验的,这么一大块脏污都没看加啊?你们验货闭着眼吗?”没说我们眼瞎不是她厚道,而是我们跟她斗争得来的结果,嗯,还算满意。她拿着一件衣服,站在包装车间跟我们车间相连的门边上对着我们高声喊,板娘就在她身后的包装车间陪着客户检验货。我们心里别提有多反感这种拿腔捏调,还没等有人回答,啪唧,衣服老远扔过来落在小刘前面。我使了个眼
- Open3D 使用RANSAC分割平面
今夕是何年,
单目+双目计算机视觉
目录1,概述2,拟合平面3,实现过程4,主要函数:defsegment_plane(self,distance_threshold,ransac_n,num_iterations):'''5,代码实现6,结果展示1,概述随机抽样一致性算法QRANSAC(Randomsampleconsensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。RANSAC算法本质上由两步组成
- chatgpt赋能python:如何在Python中计算平均值
tulingtest
ChatGptpythonchatgptnumpy计算机
如何在Python中计算平均值计算平均值是数据分析、统计和机器学习等许多领域中的常见任务。Python作为一门功能强大且易于学习的编程语言,为计算平均值提供了多种方法。在本文中,我们将介绍如何在Python中计算平均值。什么是平均值简单来说,平均值是一组数字的总和除以数字的数量。例如,对于数字序列1,3,5,7,9,平均值是(1+3+5+7+9)/5=5。平均值在数据分析中非常有用,因为它可以提供
- 计算平均值python
暖风822
python
从键盘输入三个整数,分别存入x,y,z三个整型变量中,计算并输出三个数的和以及平均值。【输入形式】从键盘输入三个整数,整数之间以空格隔开。【输出形式】在屏幕上分两行显示结果:第一行为三个数的和,整数形式输出;第二行为三个数的平均值,浮点数形式输出,小数点后保留两位小数。【输入样例】3 2 3【输出样例】82.67【样例说明】3、2、3的和为8,所以第一行输出8;第二行输出3、2、3的平均值2.67
- 【Linux 从基础到进阶】Puppet配置管理工具使用
爱技术的小伙子
Linux从基础到进阶linuxpuppet运维
Puppet配置管理工具使用Puppet是一种开源的配置管理工具,广泛用于自动化管理和配置服务器。它通过声明式的语言定义系统状态,能够跨多台服务器实现一致性配置。Puppet对运维团队来说,是一种强大的工具,能够有效管理服务器配置并简化操作复杂性。本文将详细介绍Puppet的核心概念、安装步骤、以及如何在CentOS和Ubuntu系统上进行配置和管理。1.Puppet的核心概念在使用Puppet之
- 微服务之服务注册与发现:Etcd、Zookeeper、Consul 与 Nacos 比较
陌北v1
微服务etcdzookeeperConsulNacos
在微服务架构中,服务注册与发现是实现服务动态管理和负载均衡的关键。本文将对四款主流的服务注册与发现工具——Etcd、Zookeeper、Consul、Nacos进行深入对比,从功能、性能、一致性、生态集成、应用场景等多个维度展开分析,帮助您选择最适合的工具。核心概念服务注册:服务实例启动时将自身信息(IP地址、端口、健康状态等)注册到注册中心。服务发现:服务消费者通过注册中心查询所需服务的地址列表
- 实现多级缓存的六种策略方法
Kixuan214
缓存redisrabbitmq
保证多级缓存数据一致性是一个复杂的任务,尤其是在分布式和高并发环境中。以下是一些常见的方法和策略,可以帮助实现多级缓存的数据一致性1.缓存失效策略1.1主动失效在更新数据库时,主动使相关缓存失效。步骤:更新数据库删除或失效缓存publicclassCacheService{privateLocalCachelocalCache;privateRedisCacheredisCache;private
- 2022-03-28打开格局,勇敢背黑锅
心源之园
在例会上,老板批评了我和另外一个部门的负责人,原因是我们给客户的报价是在询价的一周后才给出。老板希望是24小时内给出报价。让我们两个部门反思检讨。经过几天的内心挣扎和思想斗争,最终我还是给老板写了深刻检讨的邮件,承认主要责任,并提出了几项优化部门间合作流程的方案计划。美国作家菲茨杰拉德说:检验一流智力的标准,就是看你能不能在头脑中同时存在两种相反的想法,还维持正常行事的能力。我觉得这也可以用于评判
- 食品检验师职业资格试题附答案
安建资小栗子
其他
1、酸碱指示剂的变色原理是(C)。(A)随pH改变,指示剂离解常数改变,发生色变(B)随pH改变,指示剂结构发生改变,引起色变(C)随pH改变,指示剂起化学反应,引起色变:(D)随pH改变,指示剂发生物理化学反应,引起色变2、下列哪种微生物具有典型细胞核结构(C)。(A)沙门氏菌(B)桔青霉菌(C)葡萄球菌(D)大肠杆菌3、两种生物生活在一起,互相依赖,互相利用的这种关系称为(A)。(A)共生(B
- python卡方检验计算pvalue值_Python数据科学:卡方检验
CodeWhiz
之前已经介绍的变量分析:①相关分析:一个连续变量与一个连续变量间的关系。②双样本t检验:一个二分分类变量与一个连续变量间的关系。③方差分析:一个多分类分类变量与一个连续变量间的关系。本次介绍:卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。如果其中一个变量的分布随着另一个变量的水平不同而发生变化时,那么两个分类变量就有关系。卡方检验并不能展现出两个分类变量相关性的强弱,只能展
- python 卡方检验_Python-卡方检验
cunzai1985
pythonnumpy数据分析机器学习数据挖掘
python卡方检验Python-卡方检验(Python-Chi-SquareTest)Chi-Squaretestisastatisticalmethodtodetermineiftwocategoricalvariableshaveasignificantcorrelationbetweenthem.Boththosevariablesshouldbefromsamepopulationand
- 【Python・统计学】威尔科克森符号秩检验/Wilcoxon signed-rank test(原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:威尔科克森符号秩检验(英文名:Wilcoxonsigned-ranktest)【1.简单原理和步骤】【2.应用条件】【3.数据实例以及Python代码】1.简单原理和步骤威尔科克森符号秩检验是一种非参数检验的方法,需要数据
- 【Python・统计学】Kruskal-Wallis检验/H检验(原理及代码)
TUTO_TUTO
python统计学python学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:Kruskal-Wallis检验(Kruskal-Wallistest),也称H检验【1.定义和简单原理】【2.应用条件】【3.数据实例以及Python代码】【4.多重比较(例:Dunn检验)】1.定义和简单原理Krusk
- 【Python・统计学】单因素方差分析(简单原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:单因素方差分析(以下:方差分析)【1.方差分析简单原理和前提条件】【2.方差分析和t检验的区别】【3.方差分析代码(配对/独立+事后检验+效应量)】1.方差分析简单原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用
- 【统计学】参数检验和非参数检验的区别和基本统计学
TUTO_TUTO
统计学pythonpython
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:参数检验和非参数检验的区别以及对应的常用统计学方法(这是需要根据自己的数据类型搞清楚用哪种统计学方法的关键)【1.参数检验】【2.非参数检验】【3.参数检验和非参数检验的区别】【4.常用统计学方法】1.什么是参数和参数检验参数(parameter)的概
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc