贪心算法基本概念:
贪心的本质是通过选取局部最优达到全局最优。
并没有固定的套路,检验的算法正确性的办法可以是举反例。
Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie.
Each child i
has a greed factor g[i]
, which is the minimum size of a cookie that the child will be content with; and each cookie j
has a size s[j]
. If s[j] >= g[i]
, we can assign the cookie j
to the child i
, and the child i
will be content. Your goal is to maximize the number of your content children and output the maximum number.
Example 1:
Input: g = [1,2,3], s = [1,1] Output: 1 Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3. And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content. You need to output 1.
思路:分饼干,一个饼干最多分给一个人,若饼干大小>=孩子胃口则该孩子获得满足,设计算法尽可能满足更多的孩子。
这道题用贪心算法做,先对饼干和孩子排序。可以从大饼干和胃口大的孩子开始遍历,本着不浪费的原则,大饼干优先满足大胃口的孩子,对于每一块饼干,将胃口从大到小的孩子和它一一对应,如果满足了一个孩子,则move to下一块次大的饼干。
class Solution(object):
def findContentChildren(self, g, s):
"""
:type g: List[int] # children
:type s: List[int] # cookies
:rtype: int
"""
g.sort() # small to large
s.sort() # small to large
j = len(s) - 1 # cookies
matched = 0
for i in range(len(g) - 1, -1, -1):
if j < 0: # Check if there are any cookies left
break
if s[j] >= g[i]: # If the current cookie satisfies the appetite, move to the next cookie
matched += 1
j -= 1
return matched
时间复杂度的分析:
sort:O(nlogn),O(mlogm)。n和m分别为人和饼干的个数
for循环:O(n)。
Overall:O(nlogn) + O(mlogm)。对于较小的n
值,O(n)和O(n log n)可能相当接近。但随着n
的增大,O(n log n)的增长速度将超过O(n)。
Given an integer array nums
, find the
subarray
with the largest sum, and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: The subarray [4,-1,2,1] has the largest sum 6.
思路:求最大连续子序列之和。暴力解法O(n^2)的复杂度,做两次循环,遍历所有可能的子序列。但是也可以用一个count逐位累加,在这个过程中不断更新max_count的值。若累加值为负数,则清空重开一局,也就是以之后一个元素为新的子序列开头,防止之前子序列的负数造成拖累。
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
count = 0
max_count = float('-inf') # 注意这里是float('-inf')而不是0,有可能最大和也是是负数。
for i in range(len(nums)):
count += nums[i]
if count > max_count: # 注意这两个if的顺序不可以颠倒
max_count = count
if count <= 0: # 若当前子序列累加和都小于0了,对继续延长的序列的也是拖累,不如重新开始。
# 重新开始计数之前这个子序列的最大和已经被记录下来了。
count = 0
return max_count
# 时间复杂度O(n)