Android:Handler 机制和原理?

一、Handler机制概述

Handler机制也可以说是消息机制,Handler的运行时需要MessageQueue和Lopper的支持的。MessageQueue指消息队列,用来存储Message,虽然名为队列但其实是单向链表结构;Lopper用于消息循环,采用死循环的方式,如果有需要处理的消息就会处理,否则就会阻塞等待。
Handler的工作原理如下:

1602490736882.jpg

Handler发送一个消息,调用MessageQueue的enqueueMessage方法将Message加入消息队列;Lopper通过loop方法取出消息,最后转发给Handler,最终在handlerMessage中处理。

二、源码分析

2.1Handler构造方法

Handler的构造方法,有很多,但是最后都是调用两个方法,分别是Handler(Callback callback, boolean async)和Handler(Looper looper, Callback callback, boolean async)

    public Handler(Callback callback, boolean async) {
        //当设置为true时检测匿名,本地或者成员类继承Handler并且不是静态,这种类型的类会造成潜在的内存泄漏
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

    public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

2.2 创建以及存储Looper

我们可以从Handler的构造方法中发现Looper是创建的必要参数之一,那么创建Handler之前那就要先创建Looper,那么Looper是如何来的,我们可以看到,一种是将Looper实例化通过构造穿进来,另一种是Looper.myLooper()直接获取的

  • 自己创建一个Looper
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

可以看到创建Looper有两种方式,一种是Looper.prepare(),一种是Looper. prepareMainLooper(),第二种是给应用主线程创建Looper的,所以我们自己创建使用第一种。我们继续看会发现Looper创建后会存放在ThreadLocal中,我们来看一下这个ThreadLocal是如何存储Looper的,看源码:

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

看到这个是不是很熟悉的东西:key、value,key是当前线程,value就是当前线程对应的Looper,创建的时候还会通过ThreadLocal.get() 获取当前线程的Looper判断是否已经创建过Looper,所以可以知道Looper是跟线程绑定的,一个线程只会有一个Looper不可重复创建,ThreadLocal是来存储这些Looper的,key就是Looper所在的线程。

  • Looper.myLooper()
    我们再来看看Looper.myLooper()的源码
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

可以看到是从ThreadLocal获取存储的Looper,再看ThreadLocal.get()源码:

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

就是返回当前线程所对应的Looper
所以我们可以知道,在Handler创建前我们需要通过Looper.prepare()创建出当前线程自己的Looper,主线程则不需要创建,因为系统已经创建了,这个后面介绍。

2.3消息发送

那么Looper有了,Handler创建了,是如何发送消息的呢。我们可以发现发送消息有下面几种方法:

  • 1.sendMessage(Message msg)
  • 2.sendEmptyMessage(int what)
  • 3.sendEmptyMessageDelayed(int what, long delayMillis)
  • 4.sendEmptyMessageAtTime(int what, long uptimeMillis)
  • 5.sendMessageDelayed(Message msg, long delayMillis)
  • 6.sendMessageAtTime(Message msg, long uptimeMillis)
  • 7.sendMessageAtFrontOfQueue(Message msg)
    这里1,2,3,4,5最后调用的都是6。这里需要注意一个地方,就是系统是如何计算MessageDelayed的延迟时间的,我们看一下源码:
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

可以看到是用SystemClock.uptimeMillis() + delayMillis,那么这个SystemClock.uptimeMillis()又是什么,源码也有:

/**
 * Returns milliseconds since boot, not counting time spent in deep sleep.
 *
 * @return milliseconds of non-sleep uptime since boot.
 */
@CriticalNative
native public static long uptimeMillis();

大概意思返回自启动以来的毫秒数,不计算深度睡眠所花费的时间。注意了这里不是是用的手机当前时间。

2.4消息加入消息队列

消息发送了,这些消息是怎么管理的,那就是通过消息队列MessageQueue,把这些消息加入到消息队列中去。这个消息队列虽然名为队列却是单向链表。

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

接着看MessageQueue的enqueueMessage方法

    boolean enqueueMessage(Message msg, long when) {
        //handler为空抛异常
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        //消息已经在队列中抛异常
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
            //加入队列
            msg.markInUse();
            //时间赋值
            msg.when = when;
            //当前队列的第一个msg
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                //当没有头消息或者加入消息的触发事件为0或者早于头消息的话就讲加入消息放在队头
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                //遍历找出插入位置
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                //加入队列
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

至此,入队列完全结束。从这里可以看出,延迟低的消息会被加到延迟高的消息之前。

2.5消息处理

消息进入消息队列后就需要Lopper对消息进行提取,使用Looper.loop()方法不断的从消息队列中取出消息。这个方法是需要手动调用的,activity除外,因为activity中系统已经帮我们调用了。这个我们后面再看,下面我们看看Looper.loop()的部分源码:

    public static void loop() {
        ......
        for (;;) {
            //拿到队头的消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ......
            try {
                //msg.target.dispatchMessage(msg)其实就是Handler.dispatchMessage(msg);
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            ......
        }
    }

这里loop是一个无限循环的操作,queue.next()拿到消息然后发送给handler,那如果拿到是的是延迟消息怎么办,我们来看看queue.next()源码:

    Message next() {
        ......
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                //拿到当前系统自启动来的未休眠时间
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    //当前系统自启动来的未休眠时间小于消息出发时间是不会返回msg的
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        //到了消息触发事件,返回msg
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

也就是只有到了消息触发的时间调用next才会返回msg。至此全部结束。这里面还有一个知识点,就是IdleHandler,这个我们等下讲。
三、现在来讲讲上面遗留的问题

  • 为什么Activity中使用Handler不需要我们创建Looper
  • 为什么Activity中使用Handler不需要我们自己调用Looper.loop()去循环获取消息
  • Looper.loop()是个无限循环,且会阻塞线程,那么主线程为什么看起来没有阻塞呢
    我们来看一下源码:
    public static void main(String[] args) {
        ......
        Looper.prepareMainLooper();

        ......
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        ......
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

可以看到在ActivityThread中Looper.prepareMainLooper()创建的就是主线程中的Looper,这里是系统自己创建好的;随后创建了MainThreadHandler,主线程中自己的Handler;再然后调用了Looper.loop()。这里一、二两个问题就知道答案了,第三个问题的关键就在这个MainThreadHandler,系统就是使用这个MainThreadHandler去处理接收到的消息的,所以主线程看起来就没有被阻塞。我们来看一下MainThreadHandler是通过thread.getHandler()方法获取的,我们看一下这个方法:

    final Handler getHandler() {
        return mH;
    }

我们再看一下mH怎么来的:

    final H mH = new H();

继续:

    class H extends Handler {
        ......
        public static final int GC_WHEN_IDLE            = 120;
        public static final int RELAUNCH_ACTIVITY = 160;
        ......

        String codeToString(int code) {
            if (DEBUG_MESSAGES) {
                switch (code) {
                    case BIND_APPLICATION: return "BIND_APPLICATION";
                    ......
                }
            }
            return Integer.toString(code);
        }
        public void handleMessage(Message msg) {
            if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
            switch (msg.what) {
                ......
                case GC_WHEN_IDLE:
                    scheduleGcIdler();
                    break;
                ......
                case RELAUNCH_ACTIVITY:
                    handleRelaunchActivityLocally((IBinder) msg.obj);
                    break;
            }
            Object obj = msg.obj;
            if (obj instanceof SomeArgs) {
                ((SomeArgs) obj).recycle();
            }
            if (DEBUG_MESSAGES) Slog.v(TAG, "<<< done: " + codeToString(msg.what));
        }
    }

主线程会使用这个mH来处理消息。
我们在这里也可以看到之前在Loop.loop()方法中看到的IdleHandler,这里举例用scheduleGcIdler()方法
四、IdleHandler是什么
我们来跟一下scheduleGcIdler()源码:

    void scheduleGcIdler() {
        if (!mGcIdlerScheduled) {
            mGcIdlerScheduled = true;
            Looper.myQueue().addIdleHandler(mGcIdler);
        }
        mH.removeMessages(H.GC_WHEN_IDLE);
    }

我们可以看到Looper.myQueue().addIdleHandler加入了一个mGcIdler,我们来看一下这个mGcIdler:

    final class GcIdler implements MessageQueue.IdleHandler {
        @Override
        public final boolean queueIdle() {
            doGcIfNeeded();
            return false;
        }
    }

我们发现IdleHandler原来是一个接口:

    public static interface IdleHandler {
        /**
         * Called when the message queue has run out of messages and will now
         * wait for more.  Return true to keep your idle handler active, false
         * to have it removed.  This may be called if there are still messages
         * pending in the queue, but they are all scheduled to be dispatched
         * after the current time.
         */
        boolean queueIdle();
    }

这个queueIdle()方法表示在消息队列中消息用完后立即调用,如果返回true则会保持在系统空闲时不断调用,false则只调用一次就被删除。如果消息队列中有消息,就会被挂起等待消息处理。我们现在在来看看MessageQueue.next()方法:

    Message next() {
        ....
        for (;;) {
                ......
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        ......
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
                ......
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
            ......
        }
    }

可以在这里看到IdleHandler执行过程确实如此。

五、补充知识点

5.1HandlerThread是什么

我们通过观察源码可以发现HandlerThread继承自Thread所以他拥有Thread能力,与之不同的是HandlerThread内部自建创建了一个Handler,提供了Looper。

5.2Message.obtain()

    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

从消息池中返回新的消息,且不会分配新对象,避免了消息对象的重复创建跟销毁。

5.3怎么维护消息池

消息池也是链表结构,在消息被消费后消息池会执行回收操作,将该消息内部数据清空然后添加消息链表最前面。

你可能感兴趣的:(Android:Handler 机制和原理?)