数据结构与算法-关键路径

一、定义

在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,用边上的权值表示活动的持续时间,这种有向图的边表示活动的网,我们称之为AOE网(Acitivity On Edge Network)。
AOE网中,没有入边的顶点称为始点或源点
AOE网中,没有出边的顶点称为终点或汇点
正常情况下,AOE网中,只有一个源点一个汇点。
AOV网和AOE网都是用来工程建模的。但是它们还是有很大的不同。

  1. AOV网是顶点表示活动的网,它只是描述活动之间的制约关系。
  2. AOE网是用边表示活动的网,边上的权值表示活动持续的时间。

我们把路径上各活动持续的时间之和称为路径长度,从源点到汇点具有最大长度的路径叫关键路径。在关键路径上的活动称为关键活动

相关参数

  1. 事件的最早发生时间etv(earliest time of vertex):即顶点Vk的最早发生时间。
  2. 事件的最晚发生时间ltv(lastest time of vertex):即顶点Vk的最晚发生时间,也就是每个顶点对应的事件最晚需要开始的时间,超出此时间,整个工程将会延误整个工期。
  3. 活动的最早开工时间ete(earliest time of edge):即弧ak的最早发生时间。
  4. 活动的最晚开工时间lte(lastest time of edge):即弧ak的最晚发生时间,也就是不推迟工期的最晚开工时间。

二、算法思路

  1. 求事件的最早发生时间etv的过程,就是我们从头到尾找拓扑序列的过程。
  2. 计算tlv其实就是把拓扑序列倒过来进行。

三、代码实现

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXEDGE 30
#define MAXVEX 30
#define INFINITYC 65535

typedef int Status;    /* Status是函数的类型,其值是函数结果状态代码,如OK等 */

/* 邻接矩阵结构 */
typedef struct
{
    int vexs[MAXVEX];
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
}MGraph;

/* 邻接表结构****************** */
//边表结点
typedef struct EdgeNode
{
    //邻接点域,存储该顶点对应的下标
    int adjvex;
    //用于存储权值,对于非网图可以不需要
    int weight;
    //链域,指向下一个邻接点
    struct EdgeNode *next;
}EdgeNode;

//顶点表结点
typedef struct VertexNode
{
    //顶点入度
    int in;
    //顶点域,存储顶点信息
    int data;
    //边表头指针
    EdgeNode *firstedge;
}VertexNode, AdjList[MAXVEX];

typedef struct
{
    AdjList adjList;
    //图中当前顶点数和边数
    int numVertexes,numEdges;
}graphAdjList,*GraphAdjList;

/* **************************** */

/* 关于AOE网图的存储代码段-Begin */
//1.完成AOE网图关于邻接矩阵的存储
void CreateMGraph(MGraph *G)/* 构件图 */
{
    int i, j;
    /* printf("请输入边数和顶点数:"); */
    G->numEdges=13;
    G->numVertexes=10;

    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        G->vexs[i]=i;
    }

    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            if (i==j)
                G->arc[i][j]=0;
            else
                G->arc[i][j]=INFINITYC;
        }
    }

    G->arc[0][1]=3;
    G->arc[0][2]=4;
    G->arc[1][3]=5;
    G->arc[1][4]=6;
    G->arc[2][3]=8;
    G->arc[2][5]=7;
    G->arc[3][4]=3;
    G->arc[4][6]=9;
    G->arc[4][7]=4;
    G->arc[5][7]=6;
    G->arc[6][9]=2;
    G->arc[7][8]=5;
    G->arc[8][9]=3;

}


//2.将邻近矩阵转化成邻接表
void CreateALGraph(MGraph G,GraphAdjList *GL){

    int i,j;
    EdgeNode *e;

    *GL = (GraphAdjList)malloc(sizeof(graphAdjList));

    (*GL)->numVertexes=G.numVertexes;
    (*GL)->numEdges=G.numEdges;

    //读入顶点信息,建立顶点表
    for(i= 0;i adjList[i].in=0;
        (*GL)->adjList[i].data=G.vexs[i];
        //将边表置为空表
        (*GL)->adjList[i].firstedge=NULL;
    }

    //建立边表
    for(i=0;iadjvex=j;
                e->weight=G.arc[i][j];
                //将当前顶点上的指向的结点指针赋值给e
                e->next=(*GL)->adjList[i].firstedge;
                //将当前顶点的指针指向e
                (*GL)->adjList[i].firstedge=e;
                (*GL)->adjList[j].in++;

            }
        }
    }
}
/* 关于AOE网图的存储代码段-End! */
int *etv,*ltv; /* 事件最早发生时间和最迟发生时间数组,全局变量 */
int *stack2;   /* 用于存储拓扑序列的栈 */
int top2;       /* 用于stack2的指针*/

//拓扑排序
Status TopologicalSort(GraphAdjList GL){

    //若GL无回路,则输出拓扑排序序列且返回状态OK, 否则返回状态ERROR;
    EdgeNode *e;
    int i,k,gettop;
    //栈指针下标;
    int top = 0;
    //用于统计输出的顶点个数.作为拓扑排序是否存在回路的判断依据;
    int count = 0;
    //建栈,将入度in = 0的顶点入栈;
    int *stack = (int *)malloc(GL->numVertexes * sizeof(int));

    //遍历顶点表上入度in �= 0 入栈
    for (i = 0; i < GL->numVertexes;i++) {
        //printf("%d %d\n",i,GL->adjList[i].in);
        if ( 0 == GL->adjList[i].in ) {
            stack[++top] = i;
        }
    }

    //* stack2 的栈指针下标
    top2 = 0;
    //* 初始化拓扑序列栈
    stack2 = (int *)malloc(sizeof(int) * GL->numVertexes);
    //* 事件最早发生时间数组
    etv = (int *)malloc(sizeof(GL->numVertexes * sizeof(int)));
    //* 初始化etv 数组
    for (i = 0 ; i < GL->numVertexes; i++) {
        //初始化
        etv[i] = 0;
    }

    printf("TopologicSort:\t");
    while (top != 0) {
        gettop = stack[top--];
        printf("%d -> ", GL->adjList[gettop].data);
        count++;

        //将弹出的顶点序号压入拓扑排序的栈中;
        stack2[++top2] = gettop;
        
        //例如gettop为V0 ,那么与V0相连接的结点就有etv[1] = 3; etv[2] = 4;
        //例如gettop为V1 ,那么与V1连接的结点就有etv[4]= 3+6=9; etv[3] = 8;
        //例如gettop为V2 ,那么与V2连接的结点就有etv[5]= 4+7=11; etv[3] = 12;
        //例如gettop为V3 ,那么与V3连接的结点就有etv[4]= 12+3=15;
        for(e = GL->adjList[gettop].firstedge; e; e = e->next)
        {
            k = e->adjvex;
            
            //将i顶点连接的邻接顶点入度减1,如果入度减一后为0,则入栈
            if(!(--GL->adjList[k].in))
                stack[++top] = k;

            //求各顶点事件的最早发生的时间etv值
            //printf("etv[gettop]+e->weight = %d\n",etv[gettop]+e->weight);
            //printf("etv[%d] = %d\n",k,etv[k]);
            if ((etv[gettop] + e->weight) > etv[k]) {
                etv[k] = etv[gettop] + e->weight;
            }
        }

    }
    printf("\n");
    
    //打印etv(事件最早发生时间数组)
//    for (i = 0; i < GL->numVertexes; i++) {
//        printf("etv[%d] = %d\n",i,etv[i]);
//    }
//    printf("\n");
    
    if(count < GL->numVertexes)
        return ERROR;
    else
        return OK;
    return OK;
}

//求关键路径, GL为有向网,则输出G的各项关键活动;
void CriticalPath(GraphAdjList GL){
    EdgeNode *e;
    int i,gettop,k,j;
    
    //声明活动最早发生时间和最迟发生时间变量;
    int ete,lte;
    
    //求得拓扑序列,计算etv数组以及stack2的值
    TopologicalSort(GL);
   
    //打印etv数组(事件最早发生时间)
    printf("etv:\n");
    for(i = 0; i < GL->numVertexes; i++)
        printf("etv[%d] = %d \n",i,etv[i]);
    printf("\n");
    
    //事件最晚发生时间数组
    ltv = (int *)malloc(sizeof(int) * GL->numVertexes);
   
    //初始化ltv数组
    for (i = 0; i < GL->numVertexes; i++) {
        //初始化ltv数组. 赋值etv最后一个事件的值
        ltv[i] = etv[GL->numVertexes-1];
        //printf("ltv[%d] = %d\n",i,ltv[i]);
    }
    
    //计算ltv(事件最晚发生时间) 出栈求ltv
    while (top2 != 0) {
        
        //出栈(栈顶元素)
        gettop = stack2[top2--];
        
        //找到与栈顶元素连接的顶点; 例如V0是与V1和V2连接
        for (e = GL->adjList[gettop].firstedge; e; e = e->next) {
            //获取与gettop 相连接的顶点
            k = e->adjvex;
            //计算min(ltv[k]-e->weight,ltv[gettop])
            if (ltv[k] - e->weight < ltv[gettop]) {
                //更新ltv 数组
                ltv[gettop] = ltv[k] - e->weight;
            }
        }
    }
    
    //打印ltv 数组
    printf("ltv:\n");
    for (i = 0 ; i < GL->numVertexes; i++) {
        printf("ltv[%d] = %d \n",i,ltv[i]);
    }
    
    printf("\n");
    //求解ete,lte 并且判断lte与ete 是否相等.相等则是关键活动;
    //2层循环(遍历顶点表,边表)
    for(j=0; jnumVertexes;j++)
    {
        for (e = GL->adjList[j].firstedge; e; e = e->next) {
            //获取与j连接的顶点;
            k = e->adjvex;
            //ete 就是表示活动  的最早开工时间, 是针对这条弧来说的.而这条弧的弧尾顶点Vk 的事件发生了, 它才可以发生. 因此ete = etv[k];
            ete = etv[j];
            //lte 表示活动 的最晚开工时间, 但此活动再晚也不能等Vj 事件发生才开始,而是必须在Vj 事件之前发生. 所以lte = ltv[j] - len.
            lte = ltv[k]-e->weight;
            //如果ete == lte 则输出j,k以及权值;
            if (ete == lte) {
                printf("<%d-%d> length:%d\n",GL->adjList[j].data, GL->adjList[k].data, e->weight);
            }
        }
    }
    
}

int main(int argc, const char * argv[]) {
    // insert code here...
    printf("Hello, 关键路径的求解!\n");
    MGraph G;
    GraphAdjList GL;
    CreateMGraph(&G);
    CreateALGraph(G,&GL);
    
    //拓扑排序
    //TopologicalSort(GL);
    
    //关键路径
    CriticalPath(GL);

    return 0;
}

四、算法复杂度

该算法使用了拓扑排序,拓扑排序的算法复杂度为O(n+e),因此求解关键路径的算法复杂度也为O(n+e)。

你可能感兴趣的:(数据结构与算法-关键路径)