- 【Python】已解决:WARNING: pip is configured with locations that require TLS/SSL, however the ssl module i
屿小夏
pythonpipssl
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习模型推理速度/吞吐量计算(附代码)
Scabbards_
1500深度学习笔记深度学习人工智能
参考博文:https://mp.weixin.qq.com/s?__biz=MzI4MDYzNzg4Mw==&mid=2247546551&idx=2&sn=f198b6365e11f0a18832ff1203302632&chksm=ebb70e63dcc0877569d1838b2391744be628bf6cbb6e203a49f855e0769ecbbbf5a9929fe2db&scene
- PyTorch使用教程- Tensor包
Loving_enjoy
论文pytorch人工智能
###PyTorch使用教程-Tensor包PyTorch是一个流行的深度学习框架,它提供了一个易于使用的API来创建和操作张量(Tensors)。张量是一个多维数组,类似于NumPy中的ndarray,但它是基于GPU的,支持自动求导。本文将详细介绍PyTorch中的Tensor包,包括张量的创建、运算、形状变换、索引与切片、以及重要的张量处理方式。####一、张量的创建在PyTorch中,可以
- ChatGPT详解
Loving_enjoy
实用技巧人工智能自然语言处理
ChatGPT是一款由OpenAI研发和维护的先进的自然语言处理模型(NLP),全名为ChatGenerativePre-trainedTransformer,于2022年11月30日发布。以下是对ChatGPT的详细介绍:###一、技术架构与原理1.**技术架构**:ChatGPT建立在Transformer架构之上,这是一种深度学习模型,特别适用于处理自然语言。其核心是自注意力机制,允许模型在
- 最新版 !快速掌握 JDK17 + springboot3 + springcloud Alibaba :7、链路追踪 Micrometer Tracing&Zipkin
云上凯歌
springcloudAlibabaspringcloudspring后端
微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元。由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很难去定位。主要体现在,一个请求可能需要调用很多个服务,而内部服务的调用复杂性,决定了问题难以定位。所以微服务架构中,必须实现分布式链路追踪,去跟进一个请求到底有哪些服务参与,参与的顺序又是怎样的,从而达到每个请求的步骤清晰可见,出了问题,很快定位。分布式
- Fluss 与数据湖的深度解析(二)
java
上一篇文章中我们说了Fluss与Paimon数据湖的三个相关问题:如何查询Paimon数据湖中的数据?如何查询Fluss和Paimon数据的“联合视图”?如何只查询Fluss中的数据?大家可以先去看这一篇文章,其中第二点如何查询Fluss和Paimon数据的“联合视图”中还遗留一个问题:在做数据查询的时候Fluss和Paimon数据湖是怎么保证数据一致性的,也就是事务的。还有第三点如何只查询Flu
- Centos7挂载LVM卷
centoslvm
1.背景给单位的云主机上安装一块云硬盘,容量是1T,由于该云主机需要存放大量数据,为了保证将来硬盘具有可扩展性,决定使用LVM来管理硬盘。2.硬盘分区查找到硬盘,然后添加分区fdisk/dev/vdbn--添加新分区p--查看分区t--修改分区的type为lvm15--15表示的是lvm,如果是16禁止的,则为8ew--保存分区结果3.查看分区结果lsblk可以看到产生了/dev/vdb1这个分区
- 小团队docker hub被墙的终极方案:基于docker打造本地docker仓库镜像
docker被墙了,docker又可以了...,经历了几次被折腾了,我决定彻底在团队内部解决这一问题。在使用该方案前,配置过代理,也设置过阿里云的仓库源,但效果都不太理想,最终打造了内部的仓库镜像,完美的解决团队在拉取docker镜像时遇到的问题。前提预实现当前功能,需要满足以下前提:有可用的代理有个docker环境的主机基础实现在这直接给docker-compose.yml文件:services
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- 文心一言vsGPT-4全面对比
编程小郭
文心一言chatgptjavapython人工智能ai
文心一言和GPT-4都是当前非常先进的人工智能语言模型,它们各自具有独特的特点和优势。以下是对这两款工具的全面比较:文心一言是由百度开发的一款大型人工智能语言模型,它基于强大的深度学习技术和海量的数据资源,具备出色的语言理解和生成能力。文心一言在中文处理方面尤为出色,能够准确理解中文语境和语义,生成流畅、自然的中文文本。文心一言还具备丰富的知识库和推理能力,能够回答各种问题,提供有用的信息和建议。
- 摆脱焦虑,释放大脑——GTD(Get Things Done)的核心与深度实践
Qingzong_MA
职场小白进阶篇职场和发展
在我们的日常工作中,总会有那么一刻,突然间产生强烈的焦虑感:明明有一件重要的事还没做,然而它又像消失在时光流转中的迷雾一样,让人抓不住。你知道它很重要,可它却摆脱了大脑的捕捉,像空气一样无形、无声。一旦在老板的晨会上被点名,心头的五雷轰顶刹那间提醒了你:“原来是这个!”这种记忆的疏忽,正是许多人管理时间的最大障碍。无论是灵感的闪现,还是老板交代的琐碎任务,脑海中的瞬时遗忘都成为我们面临的最真实困境
- 基于深度学习的认知架构的AI
SEU-WYL
深度学习dnn人工智能深度学习架构
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统。结合深度学习技术,这类AI可以更好地应对动态和复杂的任务需求。1.基于深度学习的认知架构的组成一个典型的基于深度学习的认知架构包含多个关键模块:感知模块:负责从外部环境中获取数据,处理和提取特征。深度学习
- 解放双手,提高生产力,看我如何用 Python 实现自动化剪视频
程序猿-小菜
python
人类和动物最本质的区别就是人类懂的制造并使用工具,这是由上古时代一直延续至今的基因所决定的。 前段时间朋友的一个业务需要大量的原创短视频,问我是否可以帮忙弄下,我了解了具体需求之后发现不需要很高质量的内容,操作也不是很复杂,完全可以通过Python实现自动化操作,也是就把这个事给应承了下来。 我们知道PyAutoGUI是一个通过编程方式来控制鼠标和键盘的Python库,那么就从它身上下手了
- 【客观对比】激光雷达 vs 纯视觉方案:汽车自动驾驶的两种路径
wit_@
TESLAcvPYTHON自动驾驶opencv激光雷达物联网安全
激光雷达vs纯视觉方案:汽车自动驾驶的两种路径导语汽车自动驾驶技术正以惊人的速度发展,未来无疑会彻底改变我们的出行方式。在这场技术竞争中,激光雷达(LiDAR)和纯视觉(Camera-based)方案是目前最为常见的两种感知技术。它们各自有独特的优势和挑战,决定了它们在自动驾驶中的应用场景和市场定位。在这篇文章中,我们将全面分析这两种技术方案,探讨它们的利与弊,并结合实际的自动驾驶车型进行对比,帮
- 什么是AI显卡,英伟达与AMD显卡的全面对比
wit_@
人工智能python算法deeplearning大数据网络
什么是AI显卡?AI显卡是专门为人工智能计算任务设计和优化的图形处理器(GPU)。相比传统显卡,AI显卡具备更强的计算能力、更高的并行处理效率以及针对深度学习、数据科学等领域的特殊硬件支持。在人工智能领域,尤其是深度学习中,训练和推理任务需要处理大量的矩阵运算,这正是GPU擅长的领域。AI显卡通过高度并行的架构,可以显著提升训练速度和模型性能,同时降低功耗和延迟。常见的AI显卡用途包括:深度学习模
- 详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能AIGC语言模型ai大数据服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 从零开始的 AI Infra 学习之路
SSS不知-道
MLSys人工智能深度学习pytorch
从零开始的AIInfra学习之路文章目录从零开始的AIInfra学习之路一、概述二、AI算法应用2.1机器学习2.2深度学习2.3LLM三、AI开发体系3.1编程语言四、AI训练框架&推理引擎4.1PyTorch4.2llama.cpp4.3vLLM五、AI编译&计算架构5.1CUDA5.2CANN六、AI硬件&体系结构6.1INVIDIAGPU6.2AscendNPU一、概述AIInfra(AI
- 算法打卡:第十一章 图论part02
菜鸟求带飞_
数据结构与算法数据结构java算法图论
今日收获:岛屿数量(深搜),岛屿数量(广搜),岛屿的最大面积1.岛屿数量(深搜)题目链接:99.岛屿数量思路:二维遍历数组,先判断当前节点是否被访问过&是否是陆地。如果满足条件则岛屿数量加1,再通过深度优先遍历将其上下左右的陆地设置为访问过。注意:每次传入dfs函数的节点都是符合结果收集条件的,所以不用写结束条件。也可以将判断条件(访问过/不是陆地)写入dfs的结束条件中。方法:importjav
- 【深度学习】Huber Loss详解
小小小小祥
深度学习人工智能算法职场和发展机器学习
文章目录1.HuberLoss原理详解2.Pytorch代码详解3.与MSELoss、MAELoss区别及各自优缺点3.1MSELoss均方误差损失3.2MAELoss平均绝对误差损失3.3HuberLoss4.总结4.1优化平滑4.2梯度较好4.3为什么说MSE是平滑的1.HuberLoss原理详解HuberLoss是一种结合了MSE(均方误差)与MAE(平均绝对误差)的损失函数,旨在克服两者的
- 【YOLOV8】YOLOV8模型训练train及参数详解
小小小小祥
YOLO
介绍训练深度学习模型涉及为其提供数据并调整其参数,以便它能够做出准确的预测。UltralyticsYOLOv8的训练模式专为有效、高效地训练目标检测模型而设计,充分利用现代硬件的能力。本指南旨在涵盖使用YOLOv8强大功能集训练自定义模型所需的所有细节,帮助你快速入门。为什么选择UltralyticsYOLO进行训练?高效性:无论是单GPU设置还是跨多个GPU扩展,都能充分利用你的硬件。多功能性:
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- 微信小程序单选题双击取消功能实现
d1st2nt
微信小程序小程序
因为单选题不自带双击取消功能,于是在我学习了其中的逻辑之后我决定自行编写代码实现该功能。具体实现方法:添加了一个状态变量isChecked,初始值设为false,在选项上添加了点击事件,设置了两个全局变量,在点击事件中,第一个全局变量存奇数次选择的值,第二个全局变量存偶数次选择的值,将这两个变量进行对比,如果存的值一样,设置isChecked的值为false,同时将存该选项答案的变量设为空,不一样
- 基于邻接表的深度优先遍历 (非递归)
m0_57741101
深度优先搜索非递归邻接表图遍历栈
关键:利用栈来保存已经搜索到的顶点,利用top来返回上一个顶点。描述一个连通图采用邻接表作为存储结构。设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。输入多组数据,每组m+2数据行。第一行有两个数字n和m,代表有n个顶点和m条边。顶点编号为1到n。第二行到第m+1行每行有两个整数h和k,代表边依附的两个顶点。第m+2行有一个整数d,代表从d开始遍历。当n和m都等于0时,输入结束。输出每组
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 体育比分网站搭建的常规流程参考教程
翱翔的猪脑花
信息可视化
一、项目策划与需求分析在启动体育比分直播网站搭建项目前,首要任务是对市场进行深入的研究与分析,考察现有竞品的优势Atlaslive与CAF与不足,找准目标用户群体的需求痛点。例如,用户可能关注实时比分更新的速度与精确度,全面的赛事覆盖范围,深度的数据分析,以及便利的社交互动功能等。基于此,明确网站的定位和特色,设计出包括实时比分直播、赛事前瞻与回顾、详尽数据分析、体育新闻报道、互动社区等在内的核心
- 深入解读ChatGPT的工作原理及底层逻辑
NAR_鱼丸
ChatGPT程序人生
ChatGPT的工作原理和底层逻辑可以从多个方面进行解读,主要包括其基本原理、核心技术、训练过程以及应用能力。工作原理涉及了深度学习模型、自然语言处理技术和文本生成算法等多个方面。通过预训练和微调,模型能够理解语言的语法和语义,并能够根据上下文生成符合语境的文本回复。基本原理ChatGPT是一种基于自然语言处理(NLP)和深度学习技术的聊天机器人。其基本原理是使用大量文本数据来训练深度神经网络模型
- 利用redis+lua优雅实现每天给用户发短信次数限制
百味人生一壶酒
redisRedisLua短信发送限制定时任务间隔控制
最近的一个需求要求实现每天给用户发短信不超过3次,并且发短信间隔不能小于1小时,思来想去有没有什么比较好的实现方式呢,最终决定用redis+lua来实现,第一次写lua脚本。还不太熟练,不过完美的把功能实现了,废话不多说,上代码1.controller层的调用packagecom.example.lua.controller;importorg.springframework.beans.fact
- java 设计模式 工厂模式
Leaf吧
java设计模式java设计模式开发语言
什么是工厂模式工厂模式(FactoryPattern)是一种创建型设计模式,它通过定义一个接口或抽象类来创建对象,但由子类决定具体实例化哪个类。简单来说,工厂模式将对象的实例化过程封装起来,客户端通过工厂方法来创建对象,而不需要直接使用new关键字。工厂模式的目的是将对象的创建和使用解耦,使得客户端代码不需要关心具体对象的创建过程,尤其是对象的构造方式或者具体类型。工厂模式的作用解耦:客户端代码与
- 厉害了,LSTM+Transformer王炸创新,精准度又高了!
马拉AI
LSTMtransformer
【LSTM+Transformer】作为一种混合深度学习模型,近年来在学术界和工业界都受到了极大的关注。它巧妙地融合了长短期记忆网络(LSTM)在处理时序数据方面的专长和Transformer在捕捉长距离依赖关系上的优势,从而在文本生成、机器翻译、时间序列预测等多个领域取得了突破性的进展。这种创新的结合不仅提升了模型的预测精度,还优化了性能和训练效率,使其在序列分析任务中展现出卓越的能力。例如,最
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL