- LLM-生成器判别器的实现
总结首先,使用GPT模型获取每个词的生成概率pLLMp_{LLM}pLLM。然后,使用训练好的生成判别器,对每个可能的生成结果进行打分,得到pθ(c∣x1:t)p_\theta(c|x_{1:t})pθ(c∣x1:t)。最后,结合两者的输出,用贝叶斯规则调整每个词的概率,选择调整后的概率最高的词作为输出。通过这样的组合,生成过程可以更好地满足预期需求,如生成符合特定风格或格式的文本。要在使用已经预
- 正义的算法迷宫—人工智能重构司法体系的技术悖论与文明试炼
一、法庭的数字化迁徙当美国威斯康星州法院采纳COMPAS算法评估被告再犯风险,当中国"智慧法院"系统年处理1.2亿件案件,司法体系正经历从石柱法典到代码裁判的范式革命。这场转型的核心驱动力是司法效率与公正的永恒张力:美国重罪案件平均审理周期达18个月,中国基层法官年人均结案357件(是德国同行的6倍),而算法能在0.3秒内完成百万份文书比对。人工智能渗透司法引发三重裂变:证据分析从经验推断转向数据
- 在mac m1基于llama.cpp运行deepseek
lama.cpp是一个高效的机器学习推理库,目标是在各种硬件上实现LLM推断,保持最小设置和最先进性能。llama.cpp支持1.5位、2位、3位、4位、5位、6位和8位整数量化,通过ARMNEON、Accelerate和Metal支持Apple芯片,使得在MACM1处理器上运行Deepseek大模型成为可能。1下载llama.cppgitclonehttps://github.com/ggerg
- Dart 语言知识点总结
小李飞飞砖
javascript开发语言ecmascript
Dart语言知识点总结Dart是Flutter框架的编程语言,是一种面向对象的、强类型的、支持垃圾回收的语言。以下是Dart语言的核心知识点:一、基础语法1.变量与常量//变量声明varname='Alice';//类型推断Stringname='Alice';//显式类型dynamicdynamicVar='String';//动态类型//常量finalfinalVar='不可修改';//运行时
- 《扩散模型:AI图像生成革命背后的魔法》
Liudef06小白
人工智能人工智能
文章目录摘要引言一、扩散模型的基本概念与发展历程二、扩散模型的数学原理与工作机制三、扩散模型在图像生成中的革命性突破四、扩散模型面临的挑战与未来发展方向五、结论摘要本文系统阐述了扩散模型在AI图像生成领域的革命性作用及其核心原理。首先,梳理了扩散模型的基本概念、发展脉络及其相较于GANs、VAEs等传统生成模型的优势。其次,深入解析了其基于马尔可夫链和变分推断的数学基础,以及前向扩散/反向生成的核
- 【机器学习-08】参数调优宝典:网格搜索与贝叶斯搜索等攻略
云天徽上
机器学习机器学习人工智能
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 隐马尔可夫模型(HMM):观测背后的状态解码艺术
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法HMM马尔科夫概率论
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心概念:双重随机过程隐马尔可夫模型(HiddenMarkovModel,HMM)是一种通过可观测序列推断隐含状态序列的概率图模型,包含两个核心随机过程:隐含状态链:不可观测的马尔可夫过程${q_t}$P(qt∣qt−1,qt−2,…,q1)=P(
- 从0开始学习R语言--Day41--Moran‘s I
Chef_Chen
学习
在处理带有空间特征的数据,我们往往都直接一股脑地处理数据点,但很多时候,空间上的信息对于处理后续衍生出来的问题会有很大帮助,例如对于城市里大小县城的发展情况,只知道单一县城的经济发展曲线,很难解释一些拐点和突然的攀升,而如果知道相邻县城存在经济发展飞快的例子,可能就是被带动了经济水平;亦或者是在处理社交网络的好有问题时,只知道谁和谁是朋友(类似于空间矩阵),是无法推断出经济收入相似的推论的,所以说
- 结构方程模型(SEM)高阶应用系列
梦想的初衷~
结构方程生态环境python开发语言结构方程
结构方程模型(StructuralEquationModeling)是分析多变量间因果关系的利器,在众多学科领域具有巨大应用潜力。我们前期推出的《基于R语言结构方程模型》通过结构方程原理介绍、结构方程全局和局域估计、模型构建和调整、潜变量分析、复合变量分析及结构方程贝叶斯方法实现等一系列专题的介绍及大量案例讲解,由浅入深地系统介绍了结构方程模型的建立、拟合、评估、筛选和结果展示全过程,得到学员广泛
- web渗透之指纹识别2
合作小小程序员小小店
网络安全安全性测试安全威胁分析web安全网络协议
web渗透之指纹识别2框架识别在框架指纹识别中,我们可以使用response响应头,以及目标路由,目录,备份文件,图标,插件等方式来推断框架信息。cms识别在CMS指纹识别中,我们可以使用response响应头返回的信息中是否包含CMS的特有标识或其他独特的信息,文字,或者图标,插件等。在CMS的漏洞较多,我们可以通过它的指纹找到源码,或者历史漏洞查看并进行白盒测试等。cdn识别在cdn指纹识别中
- 【Rust】数据类型
Panda-gallery
Rustrust算法开发语言
目录思维导图1.数据类型概述1.1标量类型1.1.1整数类型1.1.2浮点数类型1.1.3布尔类型1.1.4字符类型1.2复合类型1.2.1元组类型1.2.2数组类型2.类型注解与类型推断3.整数溢出处理4.数字运算5.示例思维导图1.数据类型概述Rust是一种静态类型语言,所有变量的类型在编译时必须明确。Rust支持两种主要的数据类型:标量类型和复合类型。1.1标量类型标量类型表示单一值,Rus
- 条件概率:不确定性决策的基石
大千AI助手
人工智能Python#OTHER决策树算法机器学习人工智能条件概率概率论
条件概率是概率论中的核心概念,用于描述在已知某一事件发生的条件下,另一事件发生的概率。它量化了事件之间的关联性,是贝叶斯推理、统计建模和机器学习的基础。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、定义与公式设(A)和(B)是两个随机事件,且(P(B)>0):条件概率(P(A\midB))表示
- 先验与后验:贝叶斯框架下的认知进化论
大千AI助手
Python#OTHER人工智能机器学习人工智能贝叶斯概率先验概率后验概率条件概率
在贝叶斯概率框架中,“先验概率”(PriorProbability)和**“后验概率”(PosteriorProbability)的命名直接体现了认知更新的时序逻辑**。这两个概念的核心区别在于:是否已利用新证据(B)进行信念修正。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、命名的本质:认知
- 基于 LibreTV 代码库开发安卓应用的全面技术策略与实施指南
1.LibreTVWeb平台解构分析为了基于现有LibreTV项目成功构建一个原生安卓应用,首先必须对其现有Web平台的架构、核心逻辑及数据流进行一次彻底的技术解构。尽管自动化工具未能成功解析其部分源代码,但通过对其文件结构、命名规范以及行业内成熟的Web应用模式进行专家级推断分析,我们仍能精确地描绘出其内部工作机制。1.1.架构概览与技术栈推断LireTV是一个轻量级的视频聚合平台,其架构采用了
- Python 变量、数据类型、数据类型的转换介绍
cs_mengxi
Pythonpython开发语言
介绍【Python变量、数据类型、数据类型的转换】变量什么是变量python中,变量是存储数据的标识符。通过变量我们可以将数据赋值给名称,再程序中通过引用这个名称去访问对应的数据常见的使用场景变量赋值:使用等号(=)将值赋给变量。x=5name=“John”同时为多个变量赋值a=b=c=1动态类型:Python是一种动态类型语言,变量的类型是根据赋给它的值自动推断的。同一个变量可以在不同的时间赋予
- @Bean属性的destroyMethod解释
后会无期77
springbootspring
Bean如何销毁在Spring中,destroyMethod="(inferred)"是@Bean注解的一个特性,表示Spring会自动推断Bean的销毁方法,而无需显式指定。这是Spring4.3+版本引入的默认行为,旨在简化配置。1.destroyMethod="(inferred)"的含义作用:Spring会自动检查Bean是否有常见的销毁方法(如close()、shutdown()),并在
- Python训练营-Day11
m0_72314023
Python训练营python机器学习深度学习
DAY11常见的调参方式超参数调整专题1知识点回顾1.网格搜索2.随机搜索(简单介绍,非重点实战中很少用到,可以不了解)3.贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)4.time库的计时模块,方便后人查看代码运行时长#LightGBM-网格优化print("\n---3.网格搜索优化LightGBM(训练集->测试集)---")importlightgbmaslgbfromskl
- Rust 闭包
在Rust中,闭包(closures)是强大的匿名函数,可以捕获其环境中的变量。以下是Rust闭包的全面解析:一、基础闭包语法//无参数闭包letgreet=||println!("Hello!");greet();//带参数闭包letadd=|a:i32,b:i32|->i32{a+b};println!("Sum:{}",add(3,5));//类型可省略(编译器推断)letmultiply=
- 对于Java8的新特性,应该了解(掌握)的哪些
Java8的新特性一、Lambda表达式基本的使用方式Lambda表达式的使用:6种情况语法格式一:无参,无返回值语法格式二:Lambda表达式需要一个参数,但是没有返回值语法格式三:数据类型可以省略,因为可由编译器推断得出,称为"类型推断"语法格式四:Lambda若只需要一个参数,参数的小括号也可以省略语法格式五:lambda表达式需要两个或以上参数,多条执行语句,并且可以有返回值语法格式六:当
- Kotlin 函数与 Lambda 表达式
Devil枫
安卓kotlin开发语言android
今天继续分享Kotlin学习内容。目标:掌握函数定义、调用、参数传递,以及Lambda表达式的基础用法1.函数:Kotlin的代码模块化工具定义:函数是可重复调用的代码块,用于封装逻辑。语法:fun函数名(参数列表):返回类型{//函数体return结果//可省略(若表达式函数或返回类型可推断)}示例1:基础函数fungreet(name:String):String{return"Hello,$
- 认知引擎的系统性提升路径:从投影到本体的智慧涌现
核心议题:结合从投影(Projection)推断本体(Ontology)的根本挑战,旨在设计一套认知引擎的系统性提升路径。其最终目标是在知识基础设施(GlobalKnowledgeInfrastructure,GKI)中,构建一个可持续、可进化、能够自我完善并不断逼近“知识奇点”的认知系统。设计视角:以“知识架构师”(KnowledgeArchitect)的身份,我们将构建一个涵盖认知机制、知识结
- Swift中常见的面试题
~废弃回忆 �༄
swiftSwift面试题Swift常见面试题Swift面试题总结
1.Swift与OC相比有什么优势?Swift是强类型语言,注重值类型,有类型推断,安全性高Swift的语法更简洁,使用起来方便,支持函数式编程Swift拥有更强大的特性,它有元组类型、支持可选类型(optional)、支持运算符重载、支持泛型、支持静态/动态派发,协议不仅可以被类实现还可以被struct和enum实现Swift支持命名空间、函数支持默认参数Swift的错误处理机制更完善oc的优点
- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- 贝叶斯网络与深度学习的结合:图像识别和分类
AI天才研究院
AI人工智能与大数据计算AI大模型企业级应用开发实战自然语言处理人工智能语言模型编程实践开发语言架构设计
本文我将为您撰写一篇关于"贝叶斯网络与深度学习的结合:图像识别和分类"的技术博客文章。这篇文章将深入探讨贝叶斯网络和深度学习在图像识别和分类领域的结合应用。我会遵循您提供的要求和结构模板,确保文章内容全面、深入且易于理解。让我们开始吧。贝叶斯网络与深度学习的结合:图像识别和分类关键词:贝叶斯网络、深度学习、图像识别、图像分类、概率推理、卷积神经网络、不确定性建模文章目录贝叶斯网络与深度学习的结合:
- 贝叶斯回归:从概率视角量化预测的不确定性
大千AI助手
人工智能Python#OTHER回归数据挖掘人工智能机器学习算法贝叶斯
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!贝叶斯方法在回归问题中的应用被称为贝叶斯回归(BayesianRegression)。与传统频率派的线性回归(如最小二乘法)不同,贝叶斯回归的核心思想是:将回归参数(如权重系数)视为随机变量,通过贝叶斯定理结合先验分布和观测数据,推导出参数的后验分布,
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- C# Lambda表达式:从匿名方法到优雅简洁的代码革命
钢铁男儿
C#图解教程c#开发语言
本文将系统解析Lambda表达式的演变历程、核心语法和实战应用,帮助开发者彻底掌握这一革命性特性:一、演进背景:为什么需要Lambda表达式?C#2.0匿名方法的痛点MyDeldel=delegate(intx){returnx+1;};//原始匿名方法冗余的delegate关键字必须显式声明参数类型语法臃肿(平均比Lambda多70%字符)C#3.0的解决方案Lambda表达式通过类型推断和语法
- 因果推理与因果学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
因果推理与因果学习原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:因果关系发现、因果推断、因果学习、机器学习、统计方法1.背景介绍1.1问题的由来在现实世界的数据分析中,我们经常面临这样的挑战:从观察数据中识别出潜在的原因与效果之间的关联,并理解这些关联背后的实际机制。传统的预测建模关注于基于输入变量对输出变量进行预测,
- 随机化在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、随机化的核心目的1.1控制混杂偏倚1.1.1平衡预后因素确保已知/未知预后因素在组间分布均衡,避免基线不平衡影响结果。1.1.2避免选择偏倚防止研究者或患者主观选择分组,保障组间差异归因于干预。1.2保障统计推断有效性1.2.1满足独立性假设满足统计检验的独立性假设,使统计推断有效。1.2.2实现盲法基础为双盲实施提供先决条件,确保试验结果无偏。二、随机化类型与技术实现2.1简单随机化2.1.
- Python中的变量与数据类型
難釋懷
pythonwindows开发语言
一、前言在Python编程中,变量(Variable)和数据类型(DataType)是程序开发中最基本也是最核心的概念。变量用于存储程序运行过程中的各种值,而数据类型则决定了变量可以存储什么样的数据、支持哪些操作。Python作为一门动态类型语言,无需显式声明变量的数据类型,解释器会根据赋给变量的值自动推断其类型。这种特性使得Python更加简洁易用,但也要求开发者对常见数据类型有清晰的认识。本文
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi