- 如何选择AI外呼产品?技术人必看的五大核心指标
MARS_AI_
人工智能自然语言处理语音识别信息与通信nlp
随着AI技术的快速发展,AI外呼产品逐渐成为企业客户沟通与业务拓展的利器。然而,面对市场上琳琅满目的解决方案,如何选择一款真正适合自身业务的AI外呼产品?本文从技术视角出发,结合实际应用场景,总结出五大核心评估指标,助你科学决策。一、技术核心:从算法到落地的关键AI外呼产品的核心能力取决于其底层技术架构,尤其是自然语言处理(NLP)与大模型技术的应用水平。以下是不同技术方案的对比:技术选型建议:•
- 数据结构2---------->时间复杂度
free-elcmacom
数据结构
一、算法的效率:1.如何正确的衡量一个算法的好坏呢?请看下面的斐波拉契数列:我先简单介绍一下斐波拉契数列:斐波那契数列(黄金分割数列),它是由数学家莱昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……即这个数列从第三项开始,每一项都等于前两项之和。longlongFib(in
- 快速排序,折半算法
zm
算法java数据结构
快速排序#include#includeintone_kp(int*arr,intlow,inthigh){intbase=arr[low];while(low=base){high--;}arr[low]=arr[high];//lowwhile(lowinthalf_search(int*arr,intlow,inthigh,intvalue){//当数据中只有一个数时,也要进行折半查找whi
- SLAM文献之-IMLS-SLAM: scan-to-model matching based on 3D data
点云SLAM
SLAM3d机器学习SLAMIMLSICP
IMLS-SLAM算法原理详解一、算法概述IMLS-SLAM(ImplicitMovingLeastSquaresSLAM)是一种基于3D激光雷达数据的低漂移SLAM算法,由Jean-EmmanuelDeschaud等人在2018年提出。其核心思想是通过隐式移动最小二乘(IMLS)曲面建模实现scan-to-model的匹配框架,显著提升了定位与建图的精度和鲁棒性。该算法在无闭环检测的情况下,4公
- 行为型模式 - 模板方法模式 (Template Method Pattern)
_真相只有一个
Java设计模式模板方法模式设计模式
行为型模式-模板方法模式(TemplateMethodPattern)模板方法模式定义了一个操作中的算法骨架,将一些步骤的实现延迟到子类中。使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。假设有一个饮品制作流程,包括烧水、冲泡/酿造、倒入杯子、添加调料等步骤。不同的饮品(如咖啡和茶)在冲泡/酿造和添加调料这两个步骤可能有所不同,而烧水和倒入杯子步骤是通用的。可以使用模板方法模式来实
- 行为型模式 - 策略模式 (Strategy Pattern)
_真相只有一个
Java设计模式策略模式设计模式
行为型模式-策略模式(StrategyPattern)策略模式定义了一系列的算法,并将每个算法封装起来,使它们可以相互替换。策略模式让算法的变化独立于使用算法的客户端。以下是几个策略模式的经典案例。//一个经典的例子,支付方式、微信、支付宝、银联//1.策略接口publicinterfacePaymentStrategy{voidpay(doubleamount);}//2.具体策略实现//微信p
- 通过Python编程语言实现“机器学习”小项目教程案例
指尖下的技术
DeepSeekpython机器学习开发语言
以下为你提供一个使用Python实现简单机器学习项目的教程案例,此案例将使用鸢尾花数据集进行分类任务,运用经典的支持向量机(SVM)算法。步骤1:环境准备首先,你要确保已经安装了必要的Python库,像scikit-learn、pandas、matplotlib和seaborn。可以使用以下命令进行安装:pipinstallscikit-learnpandasmatplotlibseaborn步骤
- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- C++信奥赛/竞赛/专项选拔赛:史上最好记的优先级口诀!
Alan呆
c++信奥赛01顺序结构算法前端c++
优先级口诀括号成员第一;全体单目第二;乘除余三,加减四;移位五,关系六;等于不等排第七;位与异或和位或;“三分天下”八九十;逻辑与十一,逻辑或十二;条件十三,赋值十四;逗号十五最末尾。解释1.括号成员第一括号:包括小括号()、中括号[]和大括号{}等。小括号常用于函数调用、强制类型转换和表达式分组;中括号用于数组下标访问;大括号用于代码块和初始化列表等。括号的优先级是最高的,会先计算括号内的表达式
- 【算法系列】有趣的计数排序
binbinxyz
算法排序算法数据结构java
文章目录计数排序(CountingSort)详解一、基本思想1.基本原理2.适用场景3.稳定性二、实现步骤1.统计频率2.累积频率3.构建输出数组4.复制回原数组三、代码实现四、时间复杂度分析五、空间复杂度分析六、计数排序的优缺点七、总结计数排序(CountingSort)详解计数排序(CountingSort)是一种非比较型排序算法,适用于整数排序。它通过计算每个元素出现的次数来确定它们在输出数
- C++ STL学习笔记
黎明怀羽
C++c++学习笔记
C++STL学习笔记引言C++STL(StandardTemplateLibrary,标准模板库)是C++编程语言的核心之一,提供了丰富的容器、算法、迭代器和函数对象。STL让C++编程变得更加简洁和高效,极大地提升了程序员的开发效率。STL采用了泛型编程的思想,通过模板支持多种数据类型,从而实现了高度的代码复用。在这篇学习笔记中,我将带你深入探讨STL中的各种组件,了解如何使用这些工具高效编写代
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- 【算法系列】希尔排序算法
binbinxyz
排序算法算法java
文章目录希尔排序算法:一种高效的排序方法一、基本思想二、实现步骤1.初始化增量2.分组与排序3.缩小增量4.最终排序三、代码实现四、增量序列的选择1.Shell增量序列2.Hibbard增量序列3.Sedgewick增量序列五、时间复杂度六、总结希尔排序算法:一种高效的排序方法在讨论希尔排序之前,我们先回顾一下选择排序的基本概念。选择排序是一种简单的排序算法,其核心思想是通过多次遍历数组,逐步找到
- 基于Prometheus和Grafana的现代服务器监控体系构建
丁爸
运维服务器
1.简介1.1.概述基于Prometheus和Grafana的现代服务器监控体系是一种高效、灵活的监控解决方案,广泛应用于云计算和微服务架构的环境中。以下是这一监控体系的概述:Prometheus:Prometheus是一个开源的系统监控和警报工具包,由SoundCloud开发并维护。它具有强大的数据收集能力、灵活的查询语言以及与微服务架构的无缝集成。Prometheus的核心概念包括时间序列数据
- AIGC生图技术剖析:文本生成图像的核心算法与创新应用
喵手
零基础学JavaAIGC算法
全文目录:开篇语前言AIGC技术核心:从文本到图像的转换1.文本编码与语义提取2.生成对抗网络(GAN)3.变分自编码器(VAE)4.融合模型:CLIP+VQ-GAN核心算法示例:使用Python生成图像使用OpenAI的DALL-E生成图像解释AIGC在多个领域的应用前景1.艺术创作2.广告设计3.虚拟现实(VR)与增强现实(AR)4.游戏开发总结:AIGC生图技术的未来文末开篇语哈喽,各位小伙
- Accord.NET框架功能介绍
绀目澄清
Accord.NETAccord.NET
机器学习组件Accord.NET框架功能介绍1.基本功能与介绍Accord.NET为.NET应用程序提供了统计分析、机器学习、图像处理、计算机视觉相关的算法。Accord.NET框架扩展了AForge.NET框架,提供了一些新功能。同时为.NET环境下的科学计算提供了一个完整的开发环境。该框架被分成了多个程序集,可以直接从官网下载安装文件或者使用NuGet得到。可以参考以下链接:https://g
- KNN 算法优化实战分享
轻口味
算法与实践算法
KNN算法优化实战分享KNN算法优化实战分享一、引言1.KNN算法的核心思想与特点KNN(K-NearestNeighbors)算法是一种基于距离的相似性分类与回归算法。其核心原理是:对于一个待预测样本,计算其与训练集中所有样本的距离,选取距离最近的K个样本,根据这K个样本的标签进行投票(分类)或均值计算(回归),从而得到待预测样本的标签。KNN算法具有以下核心优势:无需训练:与其他需要通过大量数
- 设计模式教程:模板方法模式(Template Method Pattern)
扣丁梦想家
设计模式教程设计模式模板方法模式java
一、概述模板方法模式(TemplateMethodPattern)是一种行为型设计模式,旨在定义一个操作中的算法骨架,而将一些步骤的具体实现延迟到子类中。通过模板方法模式,父类可以不改变算法结构的情况下,让子类重新定义某些步骤的实现,从而使得不同的子类可以有不同的行为。模板方法模式适用于那些具有相同的整体流程但又希望子类可以在某些步骤上有所不同的场景。二、模板方法模式的结构模板方法模式主要包括以下
- 深入解析STL与模板元编程的应用与心得
爱编程的Loren
活动文章活动文章
一、引言 侯捷先生作为C++领域的权威专家,其课程深受开发者们的喜爱。本文将围绕侯捷C++系列课程中的STL(StandardTemplateLibrary,标准模板库)与模板元编程部分展开学习笔记,分享个人对这两大主题的深入理解与学习心得。 二、STL的深刻理解 1.STL概述 STL是C++标准库的一部分,提供了大量的通用算法、容器、迭代器和函数对象等。通过STL,我们可以更加高效
- KNN 算法性能跃升秘籍:优化实战,打造高效分类利器!
清水白石008
开发语言学习笔记人工智能算法分类机器学习
KNN算法性能跃升秘籍:优化实战,打造高效分类利器!今天,我想和大家深入探讨一种经典而实用的机器学习算法——K近邻(K-NearestNeighbors,KNN)。KNN算法以其原理简单、易于实现、无需显式训练等特点,在模式识别、分类、回归等领域得到了广泛应用。然而,正如任何算法一样,基础的KNN算法也存在着性能瓶颈,尤其是在处理大规模数据集和高维度特征时,其计算效率和预测精度都可能受到挑战。你是
- SpringBoot中实现简单策略模式
一只嘻嘻嘻
java策略模式springboot
策略模式(StrategyPattern):一个类的行为或其算法可以在运行时更改,策略模式属于行为型模式。策略模式简单Java实现:https://www.runoob.com/design-pattern/strategy-pattern.html策略模式本质就是利用类型的多态,通过接口不同实现类来实现不同的功能SpringBoot实现场景:假设登录系统的用户有多种,例如:终身会员、年度会员、月
- 【Java设计模式】Java设计模式之(十五)策略模式(Strategy Pattern)
No8g攻城狮
Java设计模式设计模式java开发语言
本文目录一、策略模式介绍1.1含义1.2适用场景1.3主要解决1.4应用实例1.5优缺点二、策略模式实现2.1类图2.2代码实现第一个案例:策略模式代码实现第二个案例:策略模式代码实现2.3角色分析三、源码分析这种类型的设计模式属于行为型模式。一、策略模式介绍1.1含义在策略模式(StrategyPattern)中,一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。在策略模式
- Sobel边缘检测算法:图像处理的关键技术
Fkvision
本文还有配套的精品资源,点击获取简介:Sobel算子是图像处理中用于边缘检测的经典方法,通过计算图像的梯度强度和方向来识别边界。本文详细介绍了Sobel算子的设计原理和实现步骤,包括图像的灰度转换、梯度计算、幅值和方向的确定,以及阈值处理和边缘细化。Sobel算子通过卷积操作实现对水平和垂直方向的边缘检测,被广泛应用于各种图像处理场景。文章还将涉及如何使用编程语言和库来实现Sobel边缘检测算法,
- 《李航 统计学习方法》学习笔记——第五章决策树
eveiiii
统计学习决策树算法剪枝python机器学习
决策树5.1决策树模型与学习5.2特征选择5.2.1信息增益5.2.2信息增益比python代码实现例题:信息增益与信息增益比5.3决策树的生成5.3.1ID3算法(python实现)5.3.2C4.5生成算法(python实现)5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝习题5.1(python实现)习题5.2(python实现)习题5.3习题5.4参考5.1
- 《李航 统计学习方法》学习笔记——第八章提升方法
eveiiii
统计学习python机器学习人工智能算法
提升方法8.1提升方法AdaBoost8.1.1提升方法的基本思路8.1.2AdaBoost算法8.1.3AdaBoost的例子(代码实现)8.2AdaBoost算法的训练误差分析定理8.1AdaBoost训练误差界定理8.2二分类问题AdaBoost训练误差界8.3AdaBoost算法的解释8.3.1前向分步算法8.3.2前向分步算法与AdaBoost8.4提升树8.4.1提升树模型8.4.2提
- 指纹识别系统架构
mickey0380
生物识别系统架构人工智能指纹识别模式识别
目录1.系统架构1.1指纹采集模块1.2指纹处理模块1.3指纹登记模块1.4指纹识别模块1.5指纹识别决策模块1.6管理模块1.6.1存储管理1.6.2传输管理1.6.3安全管理1.7应用开放功能1.7.1指纹登记功能1.7.2指纹验证功能1.7.3指纹辨识功能2.工作流程2.1指纹登记2.2指纹验证2.3指纹辨识3.系统安全3.1系统内在限制3.2系统外部攻击1.系统架构《GB∕T37076-2
- 利用springboot初始化机制三种实现策略模式的应用
π大星的日常
java策略模式springbootjava
面试时总被问,spring中使用了哪些设计模式,你在实际开发中又使用哪些设计模式。给他手指一个方向跟他说,这就是一个模式:goout!。这就是一种模式:策略模式,一个接口的多个实现方式(算法)。本文梳理了使用springboot实现的三种实现策略模式的应用我们知道,springboot应用初始化的过程是通过事件机制进行的。主要是通过EventPublishingRunListener在不同的初始化
- 常见的图像处理算法:Sobel边缘检测
资深流水灯工程师
机器视觉图像处理算法计算机视觉
Sobel算子是一个主要用于边缘检测的离散微分算子。它结合了高斯平滑和微分求导,用来计算灰度图像的近似梯度。Sobel算子是一个主要用于边缘检测的离散微分算子(discretedifferentiationoperator)。它结合了高斯平滑和微分求导,用来计算图像灰度函数的近似梯度。在图像的任何一点使用此算子,都将会产生对应的梯度矢量或是其法矢量。Sobel算子的两个3*3内核为:
- 测试管理丨OKR目标制定与关键结果解析
霍格沃兹测试开发学社测试人社区
软件测试测试开发
什么是OKROKR是一种目标管理框架,帮助组织、团队和个人明确目标并衡量进展。它由两个核心部分组成:O:明确、鼓舞人心的目标,通常是定性的。KR:衡量目标是否达成的关键结果,通常是定量的。O和KR的关系O是方向,KR是衡量标准。O回答“我们要实现什么”,KR回答“如何知道我们实现了目标”。KR必须直接支持O的实现。如何制定O明确且鼓舞人心:目标应清晰、具体,并能激励团队。简洁:用一句话概括,避免复
- Spring Boot整合策略模式:概念、使用场景、优缺点及企业级Java
程序才子
javaspringboot策略模式Java
策略模式是一种行为型设计模式,它允许在运行时选择算法的行为。SpringBoot是一个流行的Java开发框架,提供了简化的配置和快速开发的能力。在本文中,我们将探讨如何在SpringBoot应用程序中使用策略模式,讨论其使用场景、优缺点,并介绍如何在企业级Java应用程序中应用该模式。1.策略模式概念策略模式通过定义一系列算法,并将其封装在可互换的策略对象中,使得这些算法可以相互替换。它将算法的选
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本