一次内核block层Multi queue报错IO QID timeout, reset controller案例分析

最近内核block层调试IO性能(磁盘nvme,IO调度算法bfq,内核版本centos 8.3,4.18.0-240),启动fio压测一段时间后,就发现fio莫名其妙会卡死了。一看内核日志,有如下异常打印

  • nvme nvme1: I/O 61 QID 5 timeout, aborting
  • nvme nvme1: Abort status:0x0
  • nvme nvme1: I/O 0 QID 5 timeout, reset controller

这是nvme磁盘控制器的报错信息,看着是超时了,难道fio压测把nvme盘搞挂了?因为我在IO派发流程的__blk_mq_sched_dispatch_requests->blk_mq_do_dispatch_sched->blk_mq_dispatch_rq_list流程流程的blk_mq_do_dispatch_sched函数做了一些优化,所以首先怀疑nvme控制器报timeout错误与我的代码有关。而只要blk_mq_do_dispatch_sched函数回退,再fio测试就没事了,反复验证几次都是这样。

太神奇了,难道我的代码触发了nvme控制器的bug?虽然觉得难以置信,但越是难以置信的问题,越要从最基础的知识点分析。首先看看” nvme nvme1: I/O 61 QID 5 timeout, aborting”报错是在哪里?这个很容易查到,是在nvme_timeout函数!

  1. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  2. {
  3.     dev_warn(dev->ctrl.device,
  4.              "I/O %d QID %d timeout, completion polled\n",
  5.              req->tag, nvmeq->qid);
  6.     dev_warn(dev->ctrl.device,
  7.              "I/O %d QID %d timeout, reset controller\n",
  8.              req->tag, nvmeq->qid);
  9.     dev_warn(nvmeq->dev->ctrl.device,
  10.         "I/O %d QID %d timeout, aborting\n",
  11.          req->tag, nvmeq->qid);
  12. }

那这个函数的触发流程是什么呢?看了一下block层IO派发流程,是这样一个流程:

首先是IO请求(简称为rq或者req)派发给磁盘控制过程,要执行blk_mq_start_request函数,启动一个IO请求超时派发定时器,代码如下:

  1. void blk_mq_start_request(struct request *rq)
  2. {
  3.     //启动rq超时派发定时器
  4.     blk_add_timer(rq);
  5.     //设置rq->state MQ_RQ_IN_FLIGHT
  6.     WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
  7. }
  8. void blk_add_timer(struct request *req)
  9. {
  10.     struct request_queue *q = req->q;
  11.     unsigned long expiry;
  12.     if (!req->timeout)
  13.         req->timeout = q->rq_timeout;
  14.     req->rq_flags &= ~RQF_TIMED_OUT;
  15.     //expiryrq超时派发完成的时间点,系统jiffies时钟到expiryrq还没派发完成,就超时了
  16.     expiry = jiffies + req->timeout;
  17.     WRITE_ONCE(req->deadline, expiry);
  18.     expiry = blk_rq_timeout(round_jiffies_up(expiry));
  19.     if (!timer_pending(&q->timeout) ||
  20.         time_before(expiry, q->timeout.expires)) {
  21.         unsigned long diff = q->timeout.expires - expiry;
  22.         if (!timer_pending(&q->timeout) || (diff >= HZ / 2))
  23.             //启动timeout定时器
  24.             mod_timer(&q->timeout, expiry);
  25.     }
  26. }

定时器函数源码如下:

  1. static void blk_rq_timed_out_timer(struct timer_list *t)
  2. {
  3.     struct request_queue *q = from_timer(q, t, timeout);
  4.     //启动worker,对应函数是 blk_mq_timeout_work()
  5.     kblockd_schedule_work(&q->timeout_work);
  6. }

在定时器函数里其实就启动了q->timeout_work,它对应的函数是blk_mq_timeout_work。源码如下:

  1. static void blk_mq_timeout_work(struct work_struct *work)
  2. {
  3.     //在这里检查哪个rq超时派发了
  4.     blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
  5. }

就是在这个函数,检查哪些IO请求过了规定时间还没传输完成,源码如下:

  1. static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
  2.         struct request *rq, void *priv, bool reserved)
  3. {
  4.     unsigned long *next = priv;
  5.     //如果rq在指定时间还没派发完成该if成立,执行rq超时派发完成异常处理
  6.     if (blk_mq_req_expired(rq, next))
  7.         blk_mq_rq_timed_out(rq, reserved);
  8.     return true;
  9. }
  10. static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
  11. {
  12.     unsigned long deadline;
  13.     //如果rq已经派发完成了,rq->stateMQ_RQ_IN_FLIGHT改为MQ_RQ_IDLE,则这里直接返回false
  14.     if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
  15.         return false;
  16.     if (rq->rq_flags & RQF_TIMED_OUT)
  17.         return false;
  18.     //rq->deadlinerq超时派发完成时间点,如果rqrq->deadline时间点还没派发完成,该函数返回true
  19.     deadline = READ_ONCE(rq->deadline);
  20.     if (time_after_eq(jiffies, deadline))
  21.         return true;
  22.     if (*next == 0)
  23.         *next = deadline;
  24.     else if (time_after(*next, deadline))
  25.         *next = deadline;
  26.     return false;
  27. }
  28. static void blk_mq_rq_timed_out(struct request *req, bool reserved)
  29. {
  30.     req->rq_flags |= RQF_TIMED_OUT;
  31.     if (req->q->mq_ops->timeout) {
  32.         enum blk_eh_timer_return ret;
  33.         ret = req->q->mq_ops->timeout(req, reserved);//nvme_timeout
  34.         if (ret == BLK_EH_DONE)
  35.             return;
  36.         WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
  37.     }
  38.     blk_add_timer(req);
  39. }

如果某个IO请求在规定时间内(30s)没有传输完成,就会执行blk_mq_timeout_work-> blk_mq_check_expired-> blk_mq_rq_timed_out-> nvme_timeout 函数,报” nvme nvme1: I/O 61 QID 5 timeout, aborting”等nvme控制timeout错误。

分析到这里,因为是我在blk_mq_do_dispatch_sched()函数修改的代码导致某个IO请求超时派发完成,最终导致” nvme nvme1: I/O 61 QID 5 timeout, aborting”等nvme控制timeout错误。这个问题应该与nvme硬件没关系,是个软件问题!看下我在blk_mq_do_dispatch_sched函数修改的代码:

  1. static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
  2. {
  3.         struct request_queue *q = hctx->queue;
  4.         struct elevator_queue *e = q->elevator;
  5.         LIST_HEAD(rq_list);
  6.         int ret = 0;
  7.         int rq_count = 0;
  8.         do {   
  9.                 struct request *rq;
  10.                
  11.                 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
  12.                         break;
  13.                 if (!list_empty_careful(&hctx->dispatch)) {
  14.                         ret = -EAGAIN;
  15.                         break;
  16.                 }
  17.                 //if (!blk_mq_get_dispatch_budget(hctx))
  18.                 //        break;
  19.                 rq = e->type->ops.dispatch_request(hctx);
  20.                 if (!rq) {
  21.                         //blk_mq_put_dispatch_budget(hctx);
  22.                         blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
  23.                         break;
  24.                 }
  25.                 list_add(&rq->queuelist, &rq_list);
  26.                 rq_count++;
  27.                 if(rq_count >= 5){
  28.                     rq_count = 0;
  29.                     //当派发rq时遇到busy返回false退出while循环
  30.                     if(!blk_mq_dispatch_rq_list(q, &rq_list,false))
  31.                     {
  32.                         break;
  33.                     }
  34.                 }
  35.         //} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
  36.         } while (1);
  37.        
  38.         if(!list_empty(&rq_list))
  39.             blk_mq_dispatch_rq_list(q, &rq_list, false);
  40.         return ret;
  41. }

红色是添加的代码,绿色是删除的代码。这些修改怎么会导致IO请求超时派发最终导致nvme控制器timeout报错呢?真是一个神奇的问题!调试过程很繁琐,我也始终无法理解为什么原生blk_mq_do_dispatch_sched代码为什么一次只派发一个IO请求:执行rq = e->type->ops.dispatch_request(hctx)从IO调度队列取出一个IO请求,然后while (blk_mq_dispatch_rq_list(q, &rq_list, true))这里派发这个IO请求。

为什么不能从IO队列取出多个IO请求再一次性执行blk_mq_dispatch_rq_list(q, &rq_list, true)派发多个IO请求呢(这个思路就是上边展示的blk_mq_do_dispatch_sched函数增加的红色代码的作用)?突然有了个灵感,这是因为blk_mq_dispatch_rq_list()函数只能派发同一个硬件队列的IO请求?毕竟rq = e->type->ops.dispatch_request(hctx)返回的IO请求不能预料是哪个硬件队列的!干脆rq = e->type->ops.dispatch_request(hctx)取出一个IO请求,立即执行while (blk_mq_dispatch_rq_list(q, &rq_list, true))派发。我的代码是rq = e->type->ops.dispatch_request(hctx)连续取出多个IO请求,然后再执行blk_mq_dispatch_rq_list()一次性派发这么多个IO请求。如果这些IO请求属于不同的硬件队列,就会导致nvme控制timeout异常,从而导致IO请求派发失败。

有了这个思路,在blk_mq_dispatch_rq_list函数添加调试验证一下,主要就是打印派发rq的硬件队列:

  1. bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,                                                                                                            
  2.                              bool got_budget)
  3. {
  4.     LIST_HEAD(tmp_list);
  5.     do {
  6.         struct blk_mq_queue_data bd;
  7.         rq = list_first_entry(list, struct request, queuelist);
  8.         hctx = rq->mq_hctx;
  9.         list_del_init(&rq->queuelist);
  10.         bd.rq = rq;
  11.         if (list_empty(list))
  12.             bd.last = true;
  13.             printk("blk_mq_dispatch_rq_list:1 %s %d  bd.last:%d hctx->queue_num:%d rq:0x%llx",current->comm,current->pid,bd.last,hctx->queue_num,(u64)rq);
  14.         else {
  15.             nxt = list_first_entry(list, struct request, queuelist);
  16.             bd.last = !blk_mq_get_driver_tag(nxt);
  17.             printk("blk_mq_dispatch_rq_list:2 %s %d  bd.last:%d hctx->queue_num:%d rq:0x%llx",current->comm,current->pid,bd.last,hctx->queue_num,(u64)rq);
  18.         }
  19.         //IO请求rq派发给驱动
  20.         ret = q->mq_ops->queue_rq(hctx, &bd);
  21.         .............
  22.     } while (!list_empty(list));
  23.     ...................
  24. }

下次卡死时,打印

  • //blk_mq_dispatch_rq_list()函数中的while循环里连续派发了两个rq,但这两个rq属于不同的硬件队列
  • blk_mq_dispatch_rq_list:2 fio 35111 bq.last:0  hctx->queue_num:36  rq:0xffff9f44291f1320
  • blk_mq_dispatch_rq_list:1 fio 35111 bq.last:1  hctx->queue_num:12  rq:0xffff9f44291f30e0
  • ............
  • //30s 后触发nvme控制timeout超时报错
  • nvme nvme1: I/O 61 QID 5 timeout, aborting
  • nvme nvme1: Abort status:0x0
  • nvme nvme1: I/O 0 QID 5 timeout, reset controller

果然,blk_mq_dispatch_rq_list()函数中派发不同硬件队列的IO请求时,就会导致IO请求派发失败,30s都还没传输完成。然后就会触发” nvme nvme1: I/O 61 QID 5 timeout, aborting”报错。

为了进一步验证我的思路,在blk_mq_do_dispatch_sched()函数又做了一些调整:rq = e->type->ops.dispatch_request(hctx)取出的rq请求如果与上一个取出的rq所属不同的硬件队列,就立即执行 blk_mq_dispatch_rq_list()派发rq_list链表暂存的rq。这样保证rq_list的传递给blk_mq_dispatch_rq_list()要派发的rq都是同一个硬件队列的。果然,这样就一切正常了!完美搞定!

你可能感兴趣的:(linux,源码,服务器,c语言,运维)