- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- React中的高优先级任务插队机制
东方睡衣
react.jsjavascript前端
说到高优先级任务插队机制,就要提到Reatfiber这个东西了,也就是时间分片,说实话这东西我之前了解过,但是下午被面试官问到了,我还说都能答上来,结果突然问到时间分片后,被分化的小任务的执行顺序,还有就是如果有优先级高的任务插入进来,它们的执行顺序是什么,当时头皮发麻,想着我都说到这里了,怎么还问,刚刚看了下,其实原理很简单,下面一起来看看吧!在React的concurrent模式下,低优先级任
- Python Textract库:文本提取
程序员喵哥
python开发语言
更多Python学习内容:ipengtao.comTextract是一个强大的Python库,用于从各种文件格式中提取文本。无论是PDF、Word文档、Excel电子表格、HTML页面还是图像,Textract都能有效地提取其中的文本内容。Textract通过集成多种开源工具和库,实现了对多种文件格式的支持,使得文本提取变得简单而高效。本文将详细介绍Textract库的安装、主要功能、基本操作、高
- python学智能算法(八)|决策树
西猫雷婶
人工智能python学习笔记机器学习python决策树开发语言
【1】引言前序学习进程中,已经对KNN邻近算法有了探索,相关文章链接为:python学智能算法(七)|KNN邻近算法-CSDN博客但KNN邻近算法有一个特点是:它在分类的时候,不能知晓每个类别内事物的具体面貌,只能获得类别,停留在事物的表面。为了进一步探索事物的内在特征,就需要学习新的算法。本篇文章就是在KNN的基础上学习新算法:决策树。【2】原理分析在学习决策树执之前,需要先了解香农熵。本科学控
- Linux学习1_Linux命令及英文全称
Wang_Zhenwei
—Linux转载linux
LinuxCommandreferences(命令全称,方便记忆)aliasCreateyourownnameforacommandarchprintmachinearchitectureashashcommandinterpreter(shell)awk(gawk)patternscanningandprocessinglanguagebasenameRemovedirectoryandsuff
- docker compose部署dragonfly
java初学者分享
docker容器运维
整个工具的代码都在Gitee或者Github地址内gitee:solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、reids、Mqtt、S3协议的文件服务器、mongodbgithub:GitHub-ZeroNing/solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、rei
- SpringBoot整合通用xxl-job,自动注册任务
java初学者分享
springboot后端java
整个工具的代码都在Gitee或者Github地址内gitee:solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、reids、Mqtt、S3协议的文件服务器、mongodbgithub:GitHub-ZeroNing/solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、rei
- SpringBoot整合阿里云、腾讯云、minio、百度云、华为云、天翼云、金山云、七牛云、移动云、网易数帆等等有关于S3协议下文分布式对象存储接口
java初学者分享
阿里云腾讯云华为云
前提:在可运行的SpringBoot的项目内引用以下JAR包整个工具的代码都在Gitee或者Github地址内gitee:solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、reids、Mqtt、S3协议的文件服务器、mongodbgithub:GitHub-ZeroNing/solomon-parent:这个项目主要是总结了工作上遇到
- SpringBoot整合多租户MongoBD
java初学者分享
SaaS多租户专栏springboot后端javamongodb
前提:在可运行的SpringBoot的项目内引用以下JAR包整个工具的代码都在Gitee或者Github地址内gitee:solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、reids、Mqtt、S3协议的文件服务器、mongodbgithub:GitHub-ZeroNing/solomon-parent:这个项目主要是总结了工作上遇到
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- Umi-OCR:解锁高效文字识别的新时代
水熠芝Dark-Haired
Umi-OCR:解锁高效文字识别的新时代Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda项目介绍在数字化浪潮席卷全球的今天,文字识别技术已成为提升工作效率和生活质量的关键工具。Umi-OCR,作为一款基于深度学习技术的开源文字识别工具,凭借其强大的功能和高效的性能,迅速成为众多用户的首选。无
- Umi-OCR:一款强大而高效的文字识别工具
裘心国Trent
Umi-OCR:一款强大而高效的文字识别工具Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda介绍Umi-OCR是一款基于深度学习技术的开源文字识别工具,特别适合日常办公、学术研究及数据分析等场景。它能有效解决将图像中的文字快速转化为可编辑文本的需求,极大提升工作效率。此工具依托于先进的计算机
- 自动语音识别(ASR):技术、应用与未来
ajie1117
语音识别人工智能
自动语音识别(ASR):技术、应用与未来1.ASR简介自动语音识别(ASR,AutomaticSpeechRecognition)是一种将语音转换为文本的技术。它利用人工智能(AI)、深度学习和自然语言处理(NLP)技术来识别和理解人类的语言,使计算机能够与人类进行更自然的交互。2.ASR的工作原理ASR的核心流程通常包括以下几个步骤:语音信号采集:通过麦克风或其他设备获取音频数据。预处理:去除噪
- 自学黑客技术多长时间能达到挖漏洞的水平?
慕烟疏雨
网络安全web安全安全网络运维
抱着一个明确的目的去学习,学习效果能够事半功倍,给你点个赞。但值得注意的一个点是:任何未经授权的挖洞行为,都是违法的!!!任何未经授权的挖洞行为,都是违法的!!!任何未经授权的挖洞行为,都是违法的!!!这一点一定要切记!!!!!!!接下来回归主题,你想挖漏洞做副业这个想法是好的,但有时候理想很丰满,现实很骨干。从提问描述来看,你之前应该没有深入了解过网络安全,为了避免后面说的东西你理解不了,那我就
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- linux自律 第 40 天
嵌入式大大白
数据库
在学习了sqlite3数据库的增删改查之后,我开始做了一个基于web服务端的商品查询系统,将商品的图片,名称,id,详细描述和关键词等都放入了该数据库中,利用该数据库和html构建的网页来完成该项目。该项目首先需要设计出登录系统,登录需要密码和账号,所以需要注册,我打算在注册的时候使用数据库,将注册的信息放在数据库中。然后使用账号密码登录的时候,输入的账号密码在请求报文中,以post的形式发出来,
- iOS接入微信支付(小白都能看懂的微信支付)
马拉萨的春天
功能模块一天一读基础知识点
因为近期项目中需要接入微信支付功能,自己也爬了很多的坑,所以做了一下这边文章供大家学习参考,远离爬坑,文章主要讲到以下五部分:一、填写商户平台所需资料二、具体Demo代码@Github下载地址本文为本人学习记录笔记,如需转载,请注明出处@iOS_lyon填写商户平台所需资料一、填写经营信息@查看截图指引下图选择不同的类目,所需要上传的资料也是有所不同的,下图拿其它为例子填写经营信息二、填写商户信息
- 【lua】面向对象
岚花落_
lua
建议提前学习https://www.runoob.com/lua/lua-metatables.html面向对象特征1)封装:指能够把一个实体的信息、功能、响应都装入一个单独的对象中的特性。2)继承:继承的方法允许在不改动原程序的基础上对其进行扩充,这样使得原功能得以保存,而新功能也得以扩展。这有利于减少重复编码,提高软件的开发效率。3)多态:同一操作作用于不同的对象,可以有不同的解释,产生不同的
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 奇异值分解(SVD)
文弱_书生
乱七八糟神经网络人工智能
奇异值分解(SVD)介绍奇异值分解(SVD),这是最强大的矩阵分解技术之一。SVD广泛应用于机器学习、数据科学和其他计算领域,用于降维、降噪和矩阵近似等应用。与仅适用于方阵的特征分解不同,SVD可以应用于任何矩阵,使其成为一种多功能工具。在这里煮啵将分解SVD背后的理论,通过手动计算示例进行分析,并展示如何在Python中实现SVD。在本节结束时,您将清楚地了解SVD的强大功能及其在机器学习中的应
- 数字转换(dp+数论)
小崔的技术博客
算法
题意:如果一个数x的约数之和y(不包括他本身)比他本身小,那么x可以变成y,y也可以变成x。例如,4可以变为3,1可以变为7。限定所有数字变换在不超过n的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。思路:可以将每个数与能到达的数之间连一条边,这样就会形成一个森林,而题目要求的就是在森林中找一棵树的最大直径。问题转换为求树的最大直径:第一步:用筛法的变形求每个数的约数之和第二
- HAL库操作STM32串口
2021.09
STM32-CubeMXstm32单片机arm
本次博客知识来自于韦东山老师的7天物联网课程。一、cubeMX产生工程框架先从左侧选择串口1,再选择异步通信。二、分析程序如下图,cubeMX自动生成了串口初始化函数。三、编写程序以上初始化完成后,就可以使用HAL库提供的“HAL_UART_Transmit()”从串口发送数据,使用“HAL_UART_Receive()”接收数据,但这样使用不方便,需要自己处理数据类型。在学习C语言时,通常使用p
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- 【Java】TCP网络编程:从可靠传输到Socket实战
郑州吴彦祖772
【Java】网络原理java并发编程tcp/ip
活动发起人@小虚竹想对你说:这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你参加为期14天的创作挑战赛!提醒:在发布作品前,请将不需要的内容删除。各位看官,大家早安午安晚安呀~~~如果您觉得这篇文章对您有帮助的话欢迎您一
- python输出星号等腰三角形_python打印直角三角形与等腰三角形实例代码
weixin_39644139
python输出星号等腰三角形
python打印直角三角形与等腰三角形实例代码前言本文通过示例给大家详细介绍了关于python打印三角形的相关,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧1、直角三角形#i控制行数j控制*的个数foriinrange(5):i+=1forjinrange(i):print('*',end='')#end=‘'输出空格print()/2、等腰三角形row=int(input('p
- UE4手游大世界现有LevelStreaming加载机制的不足之处
你一身傲骨怎能输
UE4虚幻引擎ue4大世界
在UnrealEngine4(UE4)中,LevelStreaming是一种用于管理大型开放世界游戏场景的技术。它允许开发者将游戏世界分成多个小的“关卡”,并根据玩家的位置和视野动态加载和卸载这些关卡。这种机制在许多情况下都非常有效,但在实际应用中也存在一些不足之处,尤其是在手游开发中。以下是UE4手游大世界现有LevelStreaming加载机制的一些不足之处:1.性能开销在UnrealEngi
- 大学期间如何学习利用AI
der丸子吱吱吱
学习人工智能
一、引言人工智能(AI)是当今世界技术发展的重要方向,它已经渗透到医疗、金融、交通、娱乐等各个领域。随着AI技术的快速发展,它不仅改变了我们的生活,也带来了巨大的职业机会。然而,面对如此广阔的领域,作为大学生,如何在本科阶段有效地学习和利用AI,成了许多同学的困惑。本文将详细介绍大学生在本科阶段如何通过合理的学习路线、方法和工具,逐步掌握AI的核心技术,并为日后进入AI行业打下坚实的基础。通过这篇
- ALO蚁狮优化算法:从背景到实战的全面解析
der丸子吱吱吱
智能优化算法ALO算法
目录引言背景2.1蚁狮优化算法的起源2.2自然启发式算法的背景2.3ALO的发展与应用原理3.1蚁狮的生物行为3.2ALO的数学建模3.3算法流程与关键步骤实战应用4.1函数优化问题4.2工程优化案例4.3组合优化与约束优化代码实现与结果分析5.1Python代码实现5.2实验设计与结果分析5.3性能评估与优化建议学习资源6.1工具推荐6.2网站与文献资源6.3ALO与AI结合的方法结论1.引言在
- 【布鲁姆6大认知层级】
搞技术的季
经验分享
认知思维目标层次由低到高、由简到繁分为六个层次,层层递进,这6个层级分别是:记忆——理解——应用——分析——评价——创新。第一层:记忆是指认识并记忆概念、知识,将其储存在大脑并及时提取,例如背单词、古诗、名词概念等。这一层次所涉及的是具体知识或抽象知识的辨认,虽然机械,但对学习和解决更复杂的问题来说是必不可少的基础环节。第二层:理解是指对事物或知识的领会,当学习者对"新"知识与原有知识产生联系时,
- 全面掌握Python:从安装到基础再到进阶的系统学习之路(附代码,建议新手收藏)
der丸子吱吱吱
python学习开发语言新手入门代码
Python,作为一种现代化的高级编程语言,因其简洁易懂的语法和强大的功能,成为了数据科学、人工智能、Web开发等多个领域的首选语言。在这篇文章中,我们将从大学课本的结构来详细介绍Python,帮助大家从零基础开始,逐步深入掌握Python的各个方面。目录第一章:Python简介与安装1.1Python语言概述1.2安装Python1.3Python的开发环境1.4第一个Python程序第二章:基
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><