给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)
以这种方式修改数组后,返回数组可能的最大和。
示例 1:
输入:A = [4,2,3], K = 1
输出:5
解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。
示例 2:
输入:A = [3,-1,0,2], K = 3
输出:6
解释:选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。
示例 3:
输入:A = [2,-3,-1,5,-4], K = 2
输出:13
解释:选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。
提示:
1 <= A.length <= 10000
1 <= K <= 10000
-100 <= A[i] <= 100
class Solution:
def largestSumAfterKNegations(self, A: List[int], K: int) -> int:
A.sort(key=lambda x: abs(x), reverse=True) # 第一步:按照绝对值降序排序数组A
for i in range(len(A)): # 第二步:执行K次取反操作
if A[i] < 0 and K > 0:
A[i] *= -1
K -= 1
if K % 2 == 1: # 第三步:如果K还有剩余次数,将绝对值最小的元素取反
A[-1] *= -1
result = sum(A) # 第四步:计算数组A的元素和
return result
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
示例 1: 输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3 解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2: 输入:
gas = [2,3,4]
cost = [3,4,3]
输出: -1
解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油。开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油。开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油。你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。因此,无论怎样,你都不可能绕环路行驶一周。
可以换一个思路,首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。
i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。
如图:
那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?
如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。
那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里 curSum是不会小于零呢? 如图:
如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0。
区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了。
那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置。
局部最优可以推出全局最优,找不出反例,试试贪心!
class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
curSum = 0 # 当前累计的剩余油量
totalSum = 0 # 总剩余油量
start = 0 # 起始位置
for i in range(len(gas)):
curSum += gas[i] - cost[i]
totalSum += gas[i] - cost[i]
if curSum < 0: # 当前累计剩余油量curSum小于0
start = i + 1 # 起始位置更新为i+1
curSum = 0 # curSum重新从0开始累计
if totalSum < 0:
return -1 # 总剩余油量totalSum小于0,说明无法环绕一圈
return start
力扣题目链接(opens new window)
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
你需要按照以下要求,帮助老师给这些孩子分发糖果:
每个孩子至少分配到 1 个糖果。
相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
示例 1:
输入: [1,0,2]
输出: 5
解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。
示例 2:
输入: [1,2,2]
输出: 4
解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。第三个孩子只得到 1 颗糖果,这已满足上述两个条件。
class Solution:
def candy(self, ratings: List[int]) -> int:
candyVec = [1] * len(ratings)
# 从前向后遍历,处理右侧比左侧评分高的情况
for i in range(1, len(ratings)):
if ratings[i] > ratings[i - 1]:
candyVec[i] = candyVec[i - 1] + 1
# 从后向前遍历,处理左侧比右侧评分高的情况
for i in range(len(ratings) - 2, -1, -1):
if ratings[i] > ratings[i + 1]:
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1)
# 统计结果
result = sum(candyVec)
return result