编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],
[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],
[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-10^9 <= matrix[i][j] <= 10^9
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-10^9 <= target <= 10^9
法一:暴力法
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
if (matrix[i][j] == target)
return true;
}
return false;
}
};
法二:行间二分查找
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
for (auto &row : matrix)
{
auto it = lower_bound(row.begin(), row.end(), target);
if (it != row.end() && *it == target)
return true;
}
return false;
}
};
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
int x = m - 1, y = 0;
while(x >= 0 && y < n)
{
if (matrix[x][y] > target)
x--;
else if (matrix[x][y] < target)
y++;
else
return true;
}
return false;
}
};