10个显著提高生产力的 Jupyter Notebook 插件

Jupyter Notebook(前身为IPython Notebook)是一种开源的交互式计算和数据可视化的工具,广泛用于数据科学、机器学习、科学研究和教育等领域。它提供了一个基于Web的界面,允许用户创建和共享文档,这些文档包含实时代码、方程、可视化和文本。

在数据科学和人工智能领域,Jupyter Notebook是探索数据和开发人工智能模型的重要工具。它的交互式设置允许逐步执行代码,对于调整机器学习模型和可视化数据特别有用。Jupyter结合了代码、文本和图形,非常适合解释人工智能概念和数据分析。

在本文中,我们将探索 Jupyter Notebook 提升我们数据科学经验的强大扩展组件。

如何使用Jupyter Notebook扩展

要使用这些扩展,通常需要使用pip或conda安装它们,并在Jupyter环境中启用它们。某些扩展可能需要额外的依赖项或具有特定的兼容性要求。

首先,在Anaconda命令提示符或终端中运行以下代码来安装扩展。

 pip install jupyter_contrib_nbextensions && jupyter contrib nbextension install

如果你是windows的话可以直接在anaconda管理界面操作

10个显著提高生产力的 Jupyter Notebook 插件_第1张图片

10个显著提高生产力的 Jupyter Notebook 插件_第2张图片

这时再打开Jupyter笔记本将有一个名为“nbeextensions”的选项卡。

10个显著提高生产力的 Jupyter Notebook 插件_第3张图片

技术交流

独学而无优则孤陋而寡闻,技术要学会交流、分享,不建议闭门造车。

技术交流与答疑、源码获取,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:资料
方式②、添加微信号:dkl88194,备注:资料

我们打造了《数据分析实战案例宝典》,特点:从0到1轻松学习,方法论及原理、代码、案例应有尽有,所有案例都是按照这样的节奏进行表述。
在这里插入图片描述

常用的扩展介绍

1、Hinterland

这个扩展通过提供自动代码完成建议来提高编码效率。Hinterland提供了一个潜在匹配列表,加快了编码过程,这在处理长或复杂的函数名时特别有用。它减少了打字错误和语法错误的可能性,简化了开发工作流程。

10个显著提高生产力的 Jupyter Notebook 插件_第4张图片

2、Table of Contents

它在笔记本中创建了一个动态目录,显著改善了冗长内容的导航。可以通过点击标题快速跳转到不同的部分。这对于拥有大量笔记本的数据科学家特别有用,可以方便地访问其分析或报告的各个部分。

10个显著提高生产力的 Jupyter Notebook 插件_第5张图片

3、Spellchecker

Spellchecker扫描笔记本中的文本,突出显示拼写错误。这个功能对于确保笔记本中的文档、笔记和解释没有错误且易于理解是非常宝贵的。

图片

4、ExecuteTime

这个扩展可以显示每个单元格的执行时间。它有利于性能分析,有助于识别代码中的瓶颈。了解哪些部分运行时间最长,可以让优化代码以获得更高的效率。

10个显著提高生产力的 Jupyter Notebook 插件_第6张图片

5、Toggle all line numbers

这是一个简单而强大的代码调试和审查工具。它可以显示或隐藏所有单元格中的行号。这在查看代码中的错误或与他人协作时特别有用。

10个显著提高生产力的 Jupyter Notebook 插件_第7张图片

6、Runtools

Runtools可以提供额外的单元执行控制,增强运行的灵活性。功能包括运行当前单元以上或以下的所有单元,这对于在不执行整个文档的情况下测试不同部分非常方便。

10个显著提高生产力的 Jupyter Notebook 插件_第8张图片

7、Highlighted Selected Word

每当你选择代码中的一个词时,这个扩展自动突出显示该词的所有其他实例。这于代码分析和编辑非常有用,特别是在大型笔记本中,它有助于快速定位和修改特定的变量或函数。

10个显著提高生产力的 Jupyter Notebook 插件_第9张图片

8、Tree Filter

通过添加搜索和过滤功能改进了文件列表。这个扩展使管理和查找文件更容易,特别是在处理许多文件时。

10个显著提高生产力的 Jupyter Notebook 插件_第10张图片

9、Codefolding

折叠或折叠代码块,使读取大型代码单元更容易访问和更方便。

10个显著提高生产力的 Jupyter Notebook 插件_第11张图片

10、Code Prettifier

根据各种编码标准自动格式化代码,这对于维护代码质量,确保一致性和可读性至关重要。

10个显著提高生产力的 Jupyter Notebook 插件_第12张图片

以上就是常用的扩展介绍,还有其他很多的扩展,额可以查看官网地址:

https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions.html

主题

最后我们再说说主题,一般模型的Jupyter Notebook没有主题,就是一个简单的白色页面,但有一个第三方扩展和工具,允许我们更改或自定义主题,

可以使用Python的包管理器’ pip ‘安装’ jupyterthemes '包:

 pip install jupyterthemes

安装完成后,可以使用以下命令从终端或命令提示符切换主题:

 jt -t themename

主题哪里找呢?使用下面命令可以列出所有主题

 jt -l

然后选择一个你喜欢的主题,就可以了,例如下面的配色

10个显著提高生产力的 Jupyter Notebook 插件_第13张图片

Jupyter Notebook的主题通常用于增强可读性,提供减少眼睛疲劳的配色方案,例如夜间模式,请根据个人审美偏好自行设置。

总结

使用 Jupyter Notebook 可以方便地进行数据探索、模型训练、报告撰写等任务。而扩展组件可以扩展Jupyter Notebook 的基本功能,无论是在操作数据、可视化趋势还是展示发现,扩展都可以增强工作流程,使数据科学工作更加简便和高效。

无论你是初学者还是经验丰富的数据科学家,将这些扩展集成到您的Jupyter环境中都可以显著提高生产力和效率。

你可能感兴趣的:(数据分析及可视化,python,机器学习,jupyter,ide,python,数据分析,数据挖掘,机器学习)